Find the volume of this square based pyramid.
12 cm
10cm
10cm
V=
![Find the volume of this square based pyramid 12 cm 10cm 10cm V class=](https://us-static.z-dn.net/files/d5b/6f65338638068b08495d93b090898e0c.png)
Step-by-step explanation:
Hey there! We must use the area of a square pyramid formula to solve this. The area is given by the area of the square base multiplied by the height of the pyramid.
Square Pyramid area formula: [tex]\[\boxed{V = \frac{1}{3} \times \text{Base Area} \times \text{Height}}\][/tex]
Solving:
We know that one of the base sides is 10, meaning the other is 10
[tex]Base ~Area = 10~cm~\times 10~cm~ = 100~cm^2[/tex]
Now plug it into the formula and solve:
[tex]\[V = \frac{1}{3} \times 100 \times 12 = \frac{1}{3} \times 1200 = \boxed{400 \, \text{cm}^3}\][/tex]
There is your answer!
That's it
Answer:
[tex] \sf V = 400 \textsf{ cm}^3[/tex]
Step-by-step explanation:
To find the volume of a square-based pyramid, we can use the formula:
[tex] \Large\boxed{\boxed{ \textsf{Volume} = \dfrac{1}{3} \times \textsf{base area} \times \textsf{height}}} [/tex]
Given:
Find the Area of the Base:
Since the base of the pyramid is square, we can use the formula for the area of a square:
[tex] \textsf{Area of base} = (\textsf{side length})^2 [/tex]
[tex] \textsf{Area of base} = (10 \textsf{ cm})^2 [/tex]
[tex] \textsf{Area of base} = 100 \textsf{ cm} ^2[/tex]
Calculate the Volume:
Now, use the formula for the volume of a pyramid:
[tex] \textsf{Volume} = \dfrac{1}{3} \times \textsf{base area} \times \textsf{height} [/tex]
[tex] \textsf{Volume} = \dfrac{1}{3} \times 100 \textsf{ cm}^2 \times 12 \textsf{ cm} [/tex]
[tex] \textsf{Volume} = \dfrac{1}{3} \times 1200 \textsf{ cm}^3 [/tex]
[tex] \textsf{Volume} = 400 \textsf{ cm}^3 [/tex]
Therefore, the volume of the square-based pyramid is:
[tex]400 \textsf{ cm}^3[/tex]