Answer:
[tex]\sf SA = 125 \, \textsf{in}^2 [/tex]
Step-by-step explanation:
The total surface area ([tex]A[/tex]) of a square-based pyramid can be calculated using the formula:
[tex] \Large\boxed{\boxed{\sf SA = B + \dfrac{1}{2}Pl}} [/tex]
where
- [tex] \sf B[/tex] is the area of the base,
- [tex]\sf P[/tex] is the perimeter of the base, and
- [tex]\sf l[/tex] is the slant height.
For a square base, the area of the base ([tex]B[/tex]) is the side length squared ([tex]s^2[/tex]).
Given that the base side length ([tex]s[/tex]) is 5 in and the slant height ([tex]l[/tex]) is 10 in:
Calculate the area of the base ([tex]B[/tex]):
[tex]\sf B = s^2 \\\\ = 5^2 \\\\= 25 \, \textsf{in}^2 [/tex]
Calculate the perimeter of the base ([tex]P[/tex]) for a square:
[tex] \sf P = 4s\\\\ = 4 \times 5 \\\\= 20 \, \textsf{in} [/tex]
Substitute the values into the formula for the total surface area ([tex]A[/tex]):
[tex]\sf SA = B + \dfrac{1}{2}Pl [/tex]
[tex] \sf SA = 25 + \dfrac{1}{2} \times 20 \times 10 [/tex]
[tex] \sf SA = 25 + 100 [/tex]
[tex]\sf SA = 125 \, \textsf{in}^2 [/tex]
So, the total surface area of the square-based pyramid is:. [tex]125 \, \textsf{in}^2[/tex]