Respuesta :
Answer :
- 4 units
Explanation :
- tanθ = opposite/adjacent
here,
- opposite side of angle X = 8 units
- adjacent side of angle X = XW
plugging in the values,
- 2/1 = 8 units/XW
- XW = 8 units/2
- XW = 4 units
therefore,the measure of segment XW is 4 units.
Answer:
[tex]\sf \overline{XW}=4[/tex]
Step-by-step explanation:
The tangent trigonometric ratio is the ratio of the side opposite the angle to the side adjacent the angle in a right triangle.
[tex]\boxed{\begin{array}{l}\underline{\textsf{Tangent trigonometric ratio}}\\\\\sf \tan(\theta)=\dfrac{O}{A}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$\theta$ is the angle.}\\\phantom{ww}\bullet\;\textsf{$O$ is the side opposite the angle.}\\\phantom{ww}\bullet\;\textsf{$A$ is the side adjacent the angle.}\end{array}}[/tex]
In triangle XYW, the side opposite angle f° is YW, and side adjacent angle f° is XW. Therefore, we can express tan f° as follows:
[tex]\sf \tan f^{\circ}=\dfrac{\overline{YW}}{\overline{XW}}[/tex]
Given that [tex]\sf \overline{YW}[/tex] is 8 units, then:
[tex]\sf \tan f^{\circ}=\dfrac{8}{\overline{XW}}[/tex]
We are also told that the ratio of tan f° = 2 / 1, so we can equate the two ratios (since they both equal tan f°), and solve for [tex]\sf \overline{XW}[/tex]:
[tex]\sf \dfrac{2}{1}=\dfrac{8}{\overline{XW}}[/tex]
Multiply both sides by [tex]\sf \overline{XW}[/tex]:
[tex]\sf 2\;\overline{XW}=8[/tex]
Divide both sides by 2:
[tex]\sf \overline{XW}=4[/tex]
Therefore, the measure of segment XW is:
[tex]\LARGE\boxed{\boxed{\sf \overline{XW}=4}}[/tex]

