100 points big answer
If tan f° = two over one and the measure of segment YW is 8 units, what is the measure of segment XW? triangle XYW in which angle W is a right angle, angle X measure f degrees, and angle Y measures d degrees 2 units 4 units 7 units 8 units

Respuesta :

Answer :

  • 4 units

Explanation :

  • tanθ = opposite/adjacent

here,

  • opposite side of angle X = 8 units
  • adjacent side of angle X = XW

plugging in the values,

  • 2/1 = 8 units/XW
  • XW = 8 units/2
  • XW = 4 units

therefore,the measure of segment XW is 4 units.

Answer:

[tex]\sf \overline{XW}=4[/tex]

Step-by-step explanation:

The tangent trigonometric ratio is the ratio of the side opposite the angle to the side adjacent the angle in a right triangle.

[tex]\boxed{\begin{array}{l}\underline{\textsf{Tangent trigonometric ratio}}\\\\\sf \tan(\theta)=\dfrac{O}{A}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$\theta$ is the angle.}\\\phantom{ww}\bullet\;\textsf{$O$ is the side opposite the angle.}\\\phantom{ww}\bullet\;\textsf{$A$ is the side adjacent the angle.}\end{array}}[/tex]

In triangle XYW, the side opposite angle f° is YW, and side adjacent angle f° is XW. Therefore, we can express tan f° as follows:

[tex]\sf \tan f^{\circ}=\dfrac{\overline{YW}}{\overline{XW}}[/tex]

Given that [tex]\sf \overline{YW}[/tex] is 8 units, then:

[tex]\sf \tan f^{\circ}=\dfrac{8}{\overline{XW}}[/tex]

We are also told that the ratio of tan f° = 2 / 1, so we can equate the two ratios (since they both equal tan f°), and solve for [tex]\sf \overline{XW}[/tex]:

[tex]\sf \dfrac{2}{1}=\dfrac{8}{\overline{XW}}[/tex]

Multiply both sides by [tex]\sf \overline{XW}[/tex]:

[tex]\sf 2\;\overline{XW}=8[/tex]

Divide both sides by 2:

[tex]\sf \overline{XW}=4[/tex]

Therefore, the measure of segment XW is:

[tex]\LARGE\boxed{\boxed{\sf \overline{XW}=4}}[/tex]

Ver imagen semsee45
RELAXING NOICE
Relax