Answer:
(a)
- length = 9 ft
- width = 8 ft
(b) area = 72 ft²
Step-by-step explanation:
Let:
- length of each kennel = x ft
- width of each kennel = y ft
The total length of chain = 8x + 9y
[tex]8x+9y=144[/tex]
[tex]8x=144-9y[/tex]
[tex]x=18-\frac{9}{8} y[/tex] ... [1]
Area of each kennel (A) = length × width
[tex]A=x\times y[/tex]
(substitute x with [1])
[tex]A=(18-\frac{9}{8} y)\times y[/tex]
[tex]A=18y-\frac{9}{8} y^2[/tex]
When A is maximum → the 1st derivative of A = 0
[tex]\displaystyle \frac{dA}{dy} =0[/tex]
[tex]\displaystyle \frac{d(18y-\frac{9}{8}y^2) }{dy} =0[/tex]
[tex]18(1)y^{1-1}-\frac{9}{8} (2)y^{2-1}=0[/tex]
[tex]18-\frac{9}{4} y=0[/tex]
[tex]y=18\div\frac{9}{4}[/tex]
[tex]\bf y=8\ ft[/tex]
[1]
[tex]x=18-\frac{9}{8} y[/tex]
[tex]x=18-\frac{9}{8} (8)[/tex]
[tex]\bf x=9\ ft[/tex]
(a)
- length = 9 ft
- width = 8 ft
(b)
Area = length × width
= 9 × 8
= 72 ft²