A small dog kennel with 8 individual rectangular holding pens of equal size is to be
constructed using 144 ft of chain link fencing material. One side of the kennel is to
be placed against a building and requires no fencing, as shown in the figure below.

a. Find the dimensions (for each holding
pen) that produce a maximum area for
each pen.
b. What is that maximum area for each
holding pen?

A small dog kennel with 8 individual rectangular holding pens of equal size is to be constructed using 144 ft of chain link fencing material One side of the ken class=

Respuesta :

Answer:

(a)

  • length = 9 ft
  • width = 8 ft

(b) area = 72 ft²

Step-by-step explanation:

Let:

  • length of each kennel = x ft
  • width of each kennel = y ft

The total length of chain = 8x + 9y

[tex]8x+9y=144[/tex]

[tex]8x=144-9y[/tex]

[tex]x=18-\frac{9}{8} y[/tex] ... [1]

Area of each kennel (A) = length × width

[tex]A=x\times y[/tex]

(substitute x with [1])

[tex]A=(18-\frac{9}{8} y)\times y[/tex]

[tex]A=18y-\frac{9}{8} y^2[/tex]

When A is maximum → the 1st derivative of A = 0

[tex]\displaystyle \frac{dA}{dy} =0[/tex]

[tex]\displaystyle \frac{d(18y-\frac{9}{8}y^2) }{dy} =0[/tex]

[tex]18(1)y^{1-1}-\frac{9}{8} (2)y^{2-1}=0[/tex]

[tex]18-\frac{9}{4} y=0[/tex]

[tex]y=18\div\frac{9}{4}[/tex]

[tex]\bf y=8\ ft[/tex]

[1]

[tex]x=18-\frac{9}{8} y[/tex]

[tex]x=18-\frac{9}{8} (8)[/tex]

[tex]\bf x=9\ ft[/tex]

(a)

  • length = 9 ft
  • width = 8 ft

(b)

Area = length × width

        = 9 × 8

        = 72 ft²

Ver imagen karmenchong
ACCESS MORE