Respuesta :

msm555

Answer:

[tex] (f \cdot g)(x) = 3x^{\frac{5}{2}} [/tex]

Step-by-step explanation:

To find [tex] (f \cdot g)(x) [/tex], which represents the product of functions [tex] f(x) [/tex] and [tex] g(x) [/tex], we simply multiply the expressions for [tex] f(x) [/tex] and [tex] g(x) [/tex].

Given:

  • [tex] f(x) = 3x^2 [/tex]
  • [tex] g(x) = \sqrt{x} [/tex]

We perform [tex] (f \cdot g)(x) [/tex] as follows:

[tex] (f \cdot g)(x) = f(x) \cdot g(x) [/tex]

[tex] (f \cdot g)(x) = (3x^2) \cdot (\sqrt{x}) [/tex]

Now, let's multiply the terms together:

[tex] (f \cdot g)(x) = 3x^2 \cdot \sqrt{x} [/tex]

To simplify, we combine the terms:

[tex] (f \cdot g)(x) = 3x^{\frac{5}{2}} [/tex]

So, [tex] (f \cdot g)(x) = 3x^{\frac{5}{2}} [/tex].

ACCESS MORE