Answer:
Triangle = 18 units²
Rectangle = 54 units²
Half-circle = 14.1 units² (nearest tenth)
Total Area = 86.1 units² (nearest tenth)
Step-by-step explanation:
Area of the triangle
The formula for the area of a triangle is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a triangle}}\\\\A=\dfrac{1}{2}bh\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$b$ is the base.}\\ \phantom{ww}\bullet\;\textsf{$h$ is the height.}\end{array}}[/tex]
Given:
Substitute the given values into the formula and solve for area:
[tex]\textsf{Area of the triangle}=\dfrac{1}{2} \cdot 6 \cdot 6\\\\\\\textsf{Area of the triangle}=3 \cdot 6\\\\\\\textsf{Area of the triangle}=18\; \sf units^2[/tex]
Therefore, the area of the triangle is 18 units².
[tex]\hrulefill[/tex]
Area of the rectangle
The formula for the area of a rectangle is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a rectangle}}\\\\A=wl\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$w$ is the width.}\\ \phantom{ww}\bullet\;\textsf{$l$ is the length.}\end{array}}[/tex]
Given:
Substitute the given values into the formula and solve for area:
[tex]\textsf{Area of the rectangle}=6 \cdot 9\\\\\\\textsf{Area of the rectangle}=54\; \sf units^2[/tex]
Therefore, the area of the rectangle is 54 units².
[tex]\hrulefill[/tex]
Area of the half-circle
The formula for the area of a half-circle is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a half-circle}}\\\\A=\dfrac{1}{2}\pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$A$ is the area.}\\ \phantom{ww}\bullet\;\textsf{$r$ is the radius.}\end{array}}[/tex]
The diameter of the half-circle is 6 units. As the radius of a circle is half its diameter, then the radius is r = 3.
Substitute r = 3 into the formula and solve for area:
[tex]\textsf{Area of the half-circle}=\dfrac{1}{2}\cdot \pi \cdot 3^2\\\\\\\textsf{Area of the half-circle}=\dfrac{1}{2}\cdot \pi \cdot 9\\\\\\\textsf{Area of the half-circle}=\dfrac{9}{2}\pi\\\\\\\textsf{Area of the half-circle}=14.137166941...\\\\\\\textsf{Area of the half-circle}=14.1\; \sf units^2[/tex]
Therefore, the area of the semicircle is 14.1 units².
[tex]\hrulefill[/tex]
Total Area
To find the total area of the composite shape, sum the individual areas:
[tex]\textsf{Total Area} = 18+54+14.1\\\\\\\textsf{Total Area} = 86.1\;\sf units^2[/tex]
Therefore, the total area is 86.1 units² (rounded to the nearest tenth).