Respuesta :

Answer: [tex]-4\sin \left(\frac{a}{2}\right)\sin \left(\frac{\pi -a}{2}\right)\cos \left(a\right)[/tex]

Step-by-step explanation:

We need to use trig identities (converting sin to cosine) in order to simplify this expression.

Solving:

Given : [tex]\(4 \sin\left(\frac{a}{2}\right) \sin\left(\frac{\pi - a}{2}\right) \sin\left(\frac{3\pi}{2} - a\right)\)[/tex]

First, let's rewrite the expression:

[tex]\[ 4 \sin\left(\frac{a}{2}\right) \sin\left(\frac{\pi - a}{2}\right) \sin\left(\frac{3\pi}{2} - a\right) \][/tex]

Now, we can use the identity: [tex]\(\sin(\pi - x) = \sin(x)\) and \(\sin(3\pi/2 - a) = \text-cos(a)\)[/tex]

[tex]\[ 4 \sin\left(\frac{a}{2}\right) \sin\left(\frac{\pi - a}{2}\right) \((-cos(a)) \][/tex]

This is equivalent to the expression: [tex]\( -4\sin \left(\frac{a}{2}\right)\sin \left(\frac{\pi -a}{2}\right)\cos \left(a\right)\)[/tex]

That's it!

Ver imagen KitdaAneek
ACCESS MORE