contestada

If aqua man can withstand a pressure of 2.0 x 10^8 Pa, what must be his depth limit?

Respuesta :

Answer:

Approximately [tex]20,\!000\; {\rm m}[/tex], assuming that [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex] and that density of the liquid is uniformly [tex]\rho = 1.00 \times 10^{3}\; {\rm kg\cdot m^{-3}}[/tex].

Explanation:

At a depth of [tex]h[/tex] in a liquid of uniform density [tex]\rho[/tex], the pressure from the liquid would be:

[tex]P = \rho\, g\, h[/tex].

In this question, assuming that [tex]\rho = 1.00\times 10^{3}\; {\rm kg\cdot m^{-3}}[/tex] and [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex], the goal is to find depth [tex]h[/tex] given pressure [tex]P[/tex]. Rearrange the equation to obtain the value of depth:

[tex]\begin{aligned}h &= \frac{P}{\rho\, g} \\ &= \frac{2.0 \times 10^{8}\; {\rm Pa}}{(1.00 \times 10^{3}\; {\rm kg\cdot m^{-3}})\, (9.81\; {\rm N\cdot kg^{-1}})} \\ &\approx 20,\!000\; {\rm m}\end{aligned}[/tex].

In other words, the maximum possible depth under these assumptions would be approximately [tex]20,\!000\; {\rm m}[/tex].

ACCESS MORE