Respuesta :

Answer:

(5, -8)

Step-by-step explanation:

We can find the solution to the system of equations:

[tex]\begin{cases}-5x+y\!\!\!\!&=-33\\ \ \ \ x+4y\!\!\!\!&=-27\end{cases}[/tex]

using the elimination method.

First, we can multiply both sides of the first equation by 4:

[tex]4(-5x + y = -33)[/tex]

         ↓↓↓

[tex]-20x + 4y = -132[/tex]

Next, we can subtract the second equation from the multiplied first equation:

[tex](-20x + 4y = -132)[/tex]

[tex]\underline{-\ \ \, (x + 4y = -27)}[/tex]

[tex]-21x + 0y = -132 - (-27)[/tex]

Using the resulting equation, we can solve for the x-coordinate of the solution:

[tex]-21x = -132 + 27[/tex]

[tex]-21x = -105[/tex]

     [tex]\boxed{x = 5}[/tex]

We can now substitute this x-coordinate into one of the original equations to solve for the y-coordinate. I will use the second equation:

[tex]x + 4y = -27[/tex]

[tex]5 + 4y = -27[/tex]

      [tex]4y = -32[/tex]

       [tex]\boxed{y=-8}[/tex]

Finally, we can put these coordinates together into a solution set:

[tex]\boxed{(5, -8)}[/tex]

Further Note

If we graph both of the equations on a Cartesian plane, the solution set is the point where the lines intersect.

ACCESS MORE