Respuesta :

Answer:

C

Step-by-step explanation:

using Pythagoras' identity in the right triangle

a² + b² = c² ( c is the hypotenuse and a, b the legs )

let the unknown side be a , then

b = 11 and c = 15

substitute these values into the equation

a² + 11² = 15²

a² + 121 = 225 ( subtract 121 from both sides )

a² = 104 ( take square root of both sides )

[tex]\sqrt{a^2}[/tex] = [tex]\sqrt{104}[/tex], that is

a , the unknown side = [tex]\sqrt{104}[/tex] in

Answer:

[tex]\sqrt{104}\ \text{in.}[/tex]

Step-by-step explanation:

[tex]\text{Let the unknown side be }x.\\\text{Using Pythagoras theorem,}\\15^2=x^2+11^2\\\text{or, }15^2-11^2=x^2\\\text{or, }x^2=225-121\\\text{or, }x^2=104\\\text{or, }x=\sqrt{104}\ \text{in.}\ \ \ [x=-\sqrt{104}\text{ is not possible because }x\text{ is a length.}][/tex]

Ver imagen dashataran
ACCESS MORE