A survey of 28 randomly selected respondents provided the following data on the number of siblings each person has/had in his/her family

Let X = the number of siblings.

(a) Calculate the probabilities, P(X), and write them in decimal form.
X siblings Tally Probability, P(x), round to 3 decimal places.
0 2 0.071
1 8 0.286
2 10 0.357
3 3 0.107
4 3 0.107
5 1 0.035
6 1 0.035
Total n=28 1

(b) Find P(x=2)

P(x=2) = 0.357

(c) Find P( x ≥ 4) .

P(x ≥ 4) = 0.107

(d) Find the mean of X.


(e) Find the standard deviation of X.

Respuesta :

Answer:

(a) Probabilities:

- \( P(X=0) = 0.071 \)

- \( P(X=1) = 0.286 \)

- \( P(X=2) = 0.357 \)

- \( P(X=3) = 0.107 \)

- \( P(X=4) = 0.107 \)

- \( P(X=5) = 0.035 \)

- \( P(X=6) = 0.035 \)

(b) \( P(X=2) = 0.357 \)

(c) \( P(X \geq 4) = 0.107 \)

(d) The mean of X is 2.124.

(e) The standard deviation of X is approximately 1.682.

Step-by-step explanation:

(d) To find the mean of X, we'll use the formula for the expected value of a discrete random variable:

\[E(X) = \sum_{i=1}^{k} x_i \cdot P(X=x_i)\]

where \(x_i\) is the value of the random variable and \(P(X=x_i)\) is the corresponding probability.

Using the given data:

\[E(X) = (0 \cdot 0.071) + (1 \cdot 0.286) + (2 \cdot 0.357) + (3 \cdot 0.107) + (4 \cdot 0.107) + (5 \cdot 0.035) + (6 \cdot 0.035)\]

\[E(X) = 0 + 0.286 + 0.714 + 0.321 + 0.428 + 0.175 + 0.21\]

\[E(X) = 2.124\]

So, the mean of X is 2.124.

(e) To find the standard deviation of X, we'll use the formula:

\[ \sigma = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X=x_i)} \]

where \(x_i\) is the value of the random variable, \(\mu\) is the mean, and \(P(X=x_i)\) is the corresponding probability.

We already know \(\mu = 2.124\). Now, we'll calculate \(\sigma\):

\[ \sigma = \sqrt{(0-2.124)^2 \cdot 0.071 + (1-2.124)^2 \cdot 0.286 + (2-2.124)^2 \cdot 0.357 + (3-2.124)^2 \cdot 0.107 + (4-2.124)^2 \cdot 0.107 + (5-2.124)^2 \cdot 0.035 + (6-2.124)^2 \cdot 0.035}\]

\[ \sigma = \sqrt{(4.516 \cdot 0.071) + (1.903 \cdot 0.286) + (0.015 \cdot 0.357) + (2.561 \cdot 0.107) + (5.409 \cdot 0.107) + (14.196 \cdot 0.035) + (17.536 \cdot 0.035)}\]

\[ \sigma = \sqrt{0.320936 + 0.544858 + 0.005355 + 0.273127 + 0.578943 + 0.49786 + 0.61456}\]

\[ \sigma ≈ \sqrt{2.835639} ≈ 1.682\]

So, the standard deviation of X is approximately 1.682.

ACCESS MORE