Respuesta :
Two angles are complementary when they add up to 90° ⇒
∠A + ∠B = 90°
3x + 5 + 2x - 15 = 90
5x - 10 = 90
5x = 90 + 10
5x = 100
x = 100/5
x = 20
m∠A = 3x + 5 = 3*20 + 5 = 60 + 5 = 65°
m∠B = 2x - 15 = 2*20 - 15 = 40 - 15 = 25°
∠A + ∠B = 90°
3x + 5 + 2x - 15 = 90
5x - 10 = 90
5x = 90 + 10
5x = 100
x = 100/5
x = 20
m∠A = 3x + 5 = 3*20 + 5 = 60 + 5 = 65°
m∠B = 2x - 15 = 2*20 - 15 = 40 - 15 = 25°
Answer:
[tex]x=20[/tex]
[tex]m\angle A=65[/tex]
[tex]m\angle B=25[/tex]
Step-by-step explanation:
We have been given that ∠A and ∠B are complementary angles. The measure of angle A is [tex]3x+5[/tex] degrees and measure of angle B is [tex]2x-15[/tex] degrees.
We know that complementary angles add up-to 90 degrees, so we can set an equation as:
[tex]3x+5+2x-15=90[/tex]
[tex]5x-10=90[/tex]
[tex]5x-10+10=90+10[/tex]
[tex]5x=100[/tex]
[tex]\frac{5x}{5}=\frac{100}{5}[/tex]
[tex]x=20[/tex]
Therefore, the value of x is 20.
[tex]m\angle A=3x+5[/tex]
[tex]m\angle A=3(20)+5[/tex]
[tex]m\angle A=60+5[/tex]
[tex]m\angle A=65[/tex]
Therefore, the measure of angle A is 65 degrees.
[tex]m\angle B=2x-15[/tex]
[tex]m\angle B=2(20)-15[/tex]
[tex]m\angle B=40-15[/tex]
[tex]m\angle B=25[/tex]
Therefore, the measure of angle B is 25 degrees.
Otras preguntas
