Respuesta :

5)

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 5}}\quad ,&{{ -3}})\quad % (c,d) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies -1 \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-(-3)=-1(x-5) \\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y+3=-x+5\implies y=-x+2[/tex]

6)

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 2}}\quad ,&{{ 1}})\quad % (c,d) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies 3 \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-1=3(x-2) \\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y-1=3x-6\implies y=3x-5[/tex]

7)

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 5}}\quad ,&{{ 2}})\quad % (c,d) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies 0 \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-2=0(x-5) \\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y-2=0\implies y=2[/tex]

8)

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ -2}}\quad ,&{{ 0}})\quad % (c,d) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{5}{2} \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-0=\cfrac{5}{2}(x-(-2)) \\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y=\cfrac{5}{2}(x+2)\implies y=\cfrac{5}{2}x+5[/tex]

9)

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ -2}}\quad ,&{{ 0}})\quad % (c,d) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{5}{2} \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-0=\cfrac{5}{2}(x-(-2)) \\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y=\cfrac{5}{2}(x+2)\implies y=\cfrac{5}{2}x+5[/tex]

10)

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{-2}}\quad ,&{{ -2}})\quad % (c,d) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{3}{2} \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-(-2)=\cfrac{3}{2}(x-(-2)) \\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y+2=\cfrac{3}{2}(x+2)\implies y+2=\cfrac{3}{2}x+3\implies y=\cfrac{3}{2}x+1[/tex]
ACCESS MORE