[tex]\bf \begin{array}{lccclll}
&\stackrel{lb}{amount}&\stackrel{lb}{price}&\stackrel{total}{price}\\
&------&------&------\\
\textit{plain popcorn}&p&3&3p\\
\textit{caramel popcorn}&c&2.2&2.2c\\
-------&------&------&------\\
mixture&10&2.5&25
\end{array}[/tex]
so hmm whatever "p" and "c" are, we know that p + c = 10.
and we also know that 3p + 2.2c = 25
thus
[tex]\bf \begin{cases}
p+c=10\implies \boxed{c}=10-p\\
3p+2.2c=25\\
----------\\
3p+2.2\left(\boxed{10-p} \right)=25
\end{cases}
\\\\\\
3p+22-2.2p=25\implies 3p-2.2p=25-22\implies 0.8p=3
\\\\\\
p=\cfrac{3}{0.8}\implies p=\cfrac{15}{4}\implies p=3.75[/tex]
how much will it be needed for caramel popcorn? well, c = 10 - p.