Respuesta :
P(R)=0.8
P(Q)=0.2
as they are independent
so
P(RandQ)=P(R)×P(Q)
P(Q)=0.2
as they are independent
so
P(RandQ)=P(R)×P(Q)
Then
P(RandQ)=P(R)×P(Q)
=0.8×0.2
=0.16
Answer:
The solution is [tex]P(q \cap r)=0.16[/tex]
Step-by-step explanation:
We need to calculate the [tex](p \ \text{and} \ q)[/tex]
Given:- [tex]P(q)=0.8 \ \text{and} \ P(r) =0.2[/tex] where q and r are independent events.
Since, Events are independent then [tex]P(q \cap r)=q \times r[/tex]
⇒[tex]P(q \cap r)=q \times r[/tex]
⇒[tex]P(q \cap r)=0.8 \times 0.2[/tex]
⇒[tex]P(q \cap r)=0.16[/tex]
Therefore, the solution is [tex]P(q \cap r)=0.16[/tex]