Respuesta :

P(R)=0.8
P(Q)=0.2
as they are independent
so
P(RandQ)=P(R)×P(Q)

Then

P(RandQ)=P(R)×P(Q)

               =0.8×0.2

               =0.16

Answer:

The solution is [tex]P(q \cap r)=0.16[/tex]

Step-by-step explanation:

We need to calculate the [tex](p \ \text{and} \ q)[/tex]

Given:- [tex]P(q)=0.8 \ \text{and} \ P(r) =0.2[/tex]  where q and r are independent events.

Since, Events are independent then [tex]P(q \cap r)=q \times r[/tex]

⇒[tex]P(q \cap r)=q \times r[/tex]

⇒[tex]P(q \cap r)=0.8 \times 0.2[/tex]

⇒[tex]P(q \cap r)=0.16[/tex]

Therefore, the solution is [tex]P(q \cap r)=0.16[/tex]