Respuesta :
Parameterize the surface by
[tex]\mathbf r(s,t)=(1-s)(0,0,12)+s\bigg((1-t)(1,0,0)+t(0,-2,0)\bigg)[/tex]
[tex]\implies\mathbf r(s,t)=(x(s,t),y(s,t),z(s,t))=(s-st,-2st,12-12s)[/tex]
where [tex](s,t)\in(0,1)\times(0,1)[/tex]. We have
[tex]\|\mathbf r_s\times\mathbf r_t\|=\|(1-t,-2t,-12)\times(-s,-2s,0)\|=2\sqrt{181}s[/tex]
The surface integral is then
[tex]\displaystyle\iint_Sx\,\mathrm dS=2\sqrt{181}\int_{s=0}^{s=1}\int_{t=0}^{t=1}s(s-st)\,\mathrm dt\,\mathrm ds[/tex]
[tex]=\displaystyle2\sqrt{181}\left(\int_{s=0}^{s=1}s^2\,\mathrm ds\right)\left(\int_{t=0}^{t=1}(1-t)\,\mathrm dt\right)[/tex]
[tex]=\dfrac{\sqrt{181}}3[/tex]
[tex]\mathbf r(s,t)=(1-s)(0,0,12)+s\bigg((1-t)(1,0,0)+t(0,-2,0)\bigg)[/tex]
[tex]\implies\mathbf r(s,t)=(x(s,t),y(s,t),z(s,t))=(s-st,-2st,12-12s)[/tex]
where [tex](s,t)\in(0,1)\times(0,1)[/tex]. We have
[tex]\|\mathbf r_s\times\mathbf r_t\|=\|(1-t,-2t,-12)\times(-s,-2s,0)\|=2\sqrt{181}s[/tex]
The surface integral is then
[tex]\displaystyle\iint_Sx\,\mathrm dS=2\sqrt{181}\int_{s=0}^{s=1}\int_{t=0}^{t=1}s(s-st)\,\mathrm dt\,\mathrm ds[/tex]
[tex]=\displaystyle2\sqrt{181}\left(\int_{s=0}^{s=1}s^2\,\mathrm ds\right)\left(\int_{t=0}^{t=1}(1-t)\,\mathrm dt\right)[/tex]
[tex]=\dfrac{\sqrt{181}}3[/tex]
The surface integral for the given triangular region would be:
[tex]\frac{\sqrt{181}}{3}[/tex]
In order to determine the surface integral, we will find the perimeter of the surface:-
r(s, t) [tex]= (1 - s)(0,0,12) + s((1-t)(1,0,0) + t(0, -2, 0))[/tex]
∵ [tex]r(s, t) = (x(s, t), y(s, t), z(s, t)[/tex]
= [tex]( s - st, -2st, 12 - 12s)[/tex]
Now, we have
|| [tex]r_{s}[/tex] × [tex]r_{t}[/tex]|| = [tex]||([/tex][tex]1-t, -2t, -12)[/tex] × ([tex]-s, -2s, 0)||[/tex]
= [tex]2\sqrt{181}s[/tex]
After solving the integral, we get the surface integral:
= [tex]\frac{\sqrt{181}}{3}[/tex]
Thus, [tex]\frac{\sqrt{181}}{3}[/tex] is the correct answer.
Learn more about "Vertices" here:
brainly.com/question/11679227