Evaluate the surface integral. s x ds, s is the triangular region with vertices (1, 0, 0), (0, −2, 0), and (0, 0, 12).

Respuesta :

Parameterize the surface by

[tex]\mathbf r(s,t)=(1-s)(0,0,12)+s\bigg((1-t)(1,0,0)+t(0,-2,0)\bigg)[/tex]
[tex]\implies\mathbf r(s,t)=(x(s,t),y(s,t),z(s,t))=(s-st,-2st,12-12s)[/tex]

where [tex](s,t)\in(0,1)\times(0,1)[/tex]. We have

[tex]\|\mathbf r_s\times\mathbf r_t\|=\|(1-t,-2t,-12)\times(-s,-2s,0)\|=2\sqrt{181}s[/tex]

The surface integral is then

[tex]\displaystyle\iint_Sx\,\mathrm dS=2\sqrt{181}\int_{s=0}^{s=1}\int_{t=0}^{t=1}s(s-st)\,\mathrm dt\,\mathrm ds[/tex]
[tex]=\displaystyle2\sqrt{181}\left(\int_{s=0}^{s=1}s^2\,\mathrm ds\right)\left(\int_{t=0}^{t=1}(1-t)\,\mathrm dt\right)[/tex]
[tex]=\dfrac{\sqrt{181}}3[/tex]

The surface integral for the given triangular region would be:

[tex]\frac{\sqrt{181}}{3}[/tex]

In order to determine the surface integral, we will find the perimeter of the surface:-

r(s, t) [tex]= (1 - s)(0,0,12) + s((1-t)(1,0,0) + t(0, -2, 0))[/tex]

∵ [tex]r(s, t) = (x(s, t), y(s, t), z(s, t)[/tex]

= [tex]( s - st, -2st, 12 - 12s)[/tex]

Now, we have

|| [tex]r_{s}[/tex] × [tex]r_{t}[/tex]|| = [tex]||([/tex][tex]1-t, -2t, -12)[/tex] × ([tex]-s, -2s, 0)||[/tex]

= [tex]2\sqrt{181}s[/tex]

After solving the integral, we get the surface integral:

=  [tex]\frac{\sqrt{181}}{3}[/tex]

Thus, [tex]\frac{\sqrt{181}}{3}[/tex] is the correct answer.

Learn more about "Vertices" here:

brainly.com/question/11679227

ACCESS MORE