I need to simplify this equation and don't know how, please help!
[tex] \frac{ \frac{y}{x} - \frac{x}{y}}{ \frac{1}{y}-\frac{1}{x}} [/tex]

Respuesta :

[tex]\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -------------------------------\\\\[/tex]

[tex]\bf \cfrac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{y}-\frac{1}{x}}\implies \cfrac{\textit{LCD of \underline{xy}}}{\textit{LCD of \underline{xy} also}}\implies \cfrac{\frac{y^2-x^2}{xy}}{\frac{x-y}{xy}}\implies \cfrac{y^2-x^2}{\stackrel{ }{xy}}\cdot \cfrac{\stackrel{ }{xy}}{x-y} \\\\\\ \cfrac{y^2-x^2}{x-y}\implies \cfrac{(y-x)(y+x)}{x-y}\implies \cfrac{\stackrel{ }{(y-x)}(y+x)}{-\stackrel{ }{(y-x)}}\implies \cfrac{y+x}{-1} \\\\\\ -(y+x)\implies -y-x[/tex]
ACCESS MORE