Respuesta :

Space

Answer:

[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = 2500 \pi[/tex]

General Formulas and Concepts:
Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Multivariable Calculus

Triple Integrals

Cylindrical Coordinate Conversions:

  • [tex]\displaystyle x = r \cos \theta[/tex]
  • [tex]\displaystyle y = r \sin \theta[/tex]
  • [tex]\displaystyle z = z[/tex]
  • [tex]\displaystyle r^2 = x^2 + y^2[/tex]
  • [tex]\displaystyle \tan \theta = \frac{y}{x}}[/tex]

Integral Conversion [Cylindrical Coordinates]:
[tex]\displaystyle \iiint_T \, dV = \iiint_T {r} \, dz \, dr \, d\theta[/tex]

Step-by-step explanation:

Step 1: Define

Identify given.

[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV[/tex]

[tex]\displaystyle \text{Region} \ E \left \{ {\text{Cylinder:} \ x^2 + y^2 = 25} \atop {\text{Planes:} \ z = -3, 5} \right.[/tex]

Step 2: Integrate Pt. 1

Find r bounds.

  1. [Cylinder] Substitute in Cylindrical Coordinate Conversions:
    [tex]\displaystyle x^2 + y^2 = 25 \rightarrow r^2 = 25[/tex]
  2. Solve for r:
    [tex]\displaystyle r = \pm 5[/tex]
  3. [r] Identify:
    [tex]\displaystyle r = 5[/tex]
  4. Define limits:
    [tex]\displaystyle 0 \leq r \leq 5[/tex]

Find θ bounds.

  1. [Cylinder] Graph Circle [See 2nd Attachment]
  2. [Graph] Identify limits [Unit Circle]:
    [tex]\displaystyle 0 \leq \theta \leq 2 \pi[/tex]

Find z bounds.

  1. [Region E] Define limits:
    [tex]\displaystyle -3 \leq z \leq 5[/tex]

Step 3: Integrate Pt. 2

  1. [Integrals] Convert [Integral Conversion - Cylindrical Coordinates]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \iiint_E {r(x^2 + y^2)} \, dz \, dr \, d\theta[/tex]
  2. [Integrals] Substitute in Cylindrical Coordinate Conversions:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \iiint_E {r^3} \, dz \, dr \, d\theta[/tex]
  3. [Integrals] Substitute in region E:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 \int\limits^5_0 \int\limits^5_{-3} {r^3} \, dz \, dr \, d\theta[/tex]
  4. [dz Integral] Apply Integration Rule [Reverse Power Rule]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 \int\limits^5_0 {zr^3 \bigg| \limits^{z = 5}_{z = -3}} \, dr \, d\theta[/tex]
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 \int\limits^5_0 {8r^3} \, dr \, d\theta[/tex]
  6. [dr Integral] Apply Integration Rules and Properties [Reverse Power Rule + Multiplied Constant]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 {2r^4 \bigg| \limits^{r = 5}_{r = 0}} \, d\theta[/tex]
  7. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 {1250} \, d\theta[/tex]
  8. [Integral] Apply Integration Rules and Properties [Reverse Power Rule + Multiplied Constant]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = 1250 \theta \bigg| \limits^{\theta = 2 \pi}_{\theta = 0}[/tex]
  9. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    [tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = 2500 \pi[/tex]

∴ the given integral using cylindrical coordinates equals 2500π.

---

Learn more about cylindrical coordinates: https://brainly.com/question/7662645

Learn more about multivariable calculus: https://brainly.com/question/9381576
---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications

Ver imagen Space
Ver imagen Space
ACCESS MORE