Respuesta :
Answer:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = 2500 \pi[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Multivariable Calculus
Triple Integrals
Cylindrical Coordinate Conversions:
- [tex]\displaystyle x = r \cos \theta[/tex]
- [tex]\displaystyle y = r \sin \theta[/tex]
- [tex]\displaystyle z = z[/tex]
- [tex]\displaystyle r^2 = x^2 + y^2[/tex]
- [tex]\displaystyle \tan \theta = \frac{y}{x}}[/tex]
Integral Conversion [Cylindrical Coordinates]:
[tex]\displaystyle \iiint_T \, dV = \iiint_T {r} \, dz \, dr \, d\theta[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV[/tex]
[tex]\displaystyle \text{Region} \ E \left \{ {\text{Cylinder:} \ x^2 + y^2 = 25} \atop {\text{Planes:} \ z = -3, 5} \right.[/tex]
Step 2: Integrate Pt. 1
Find r bounds.
- [Cylinder] Substitute in Cylindrical Coordinate Conversions:
[tex]\displaystyle x^2 + y^2 = 25 \rightarrow r^2 = 25[/tex] - Solve for r:
[tex]\displaystyle r = \pm 5[/tex] - [r] Identify:
[tex]\displaystyle r = 5[/tex] - Define limits:
[tex]\displaystyle 0 \leq r \leq 5[/tex]
Find θ bounds.
- [Cylinder] Graph Circle [See 2nd Attachment]
- [Graph] Identify limits [Unit Circle]:
[tex]\displaystyle 0 \leq \theta \leq 2 \pi[/tex]
Find z bounds.
- [Region E] Define limits:
[tex]\displaystyle -3 \leq z \leq 5[/tex]
Step 3: Integrate Pt. 2
- [Integrals] Convert [Integral Conversion - Cylindrical Coordinates]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \iiint_E {r(x^2 + y^2)} \, dz \, dr \, d\theta[/tex] - [Integrals] Substitute in Cylindrical Coordinate Conversions:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \iiint_E {r^3} \, dz \, dr \, d\theta[/tex] - [Integrals] Substitute in region E:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 \int\limits^5_0 \int\limits^5_{-3} {r^3} \, dz \, dr \, d\theta[/tex] - [dz Integral] Apply Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 \int\limits^5_0 {zr^3 \bigg| \limits^{z = 5}_{z = -3}} \, dr \, d\theta[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 \int\limits^5_0 {8r^3} \, dr \, d\theta[/tex] - [dr Integral] Apply Integration Rules and Properties [Reverse Power Rule + Multiplied Constant]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 {2r^4 \bigg| \limits^{r = 5}_{r = 0}} \, d\theta[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = \int\limits^{2 \pi}_0 {1250} \, d\theta[/tex] - [Integral] Apply Integration Rules and Properties [Reverse Power Rule + Multiplied Constant]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = 1250 \theta \bigg| \limits^{\theta = 2 \pi}_{\theta = 0}[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \iiint_E {x^2 + y^2} \, dV = 2500 \pi[/tex]
∴ the given integral using cylindrical coordinates equals 2500π.
---
Learn more about cylindrical coordinates: https://brainly.com/question/7662645
Learn more about multivariable calculus: https://brainly.com/question/9381576
---
Topic: Multivariable Calculus
Unit: Triple Integrals Applications
![Ver imagen Space](https://us-static.z-dn.net/files/dad/9a2a30904c286d0e8bdb7e17a72aaa78.jpg)
![Ver imagen Space](https://us-static.z-dn.net/files/dbc/686b00ad5ca18cc5fad0261722018ad9.jpg)