Denote the annular region by [tex]A[/tex]. The average value of [tex]f(x,y)=\dfrac7{x^2+y^2}[/tex] over [tex]A[/tex] is given by
[tex]\dfrac{\displaystyle\iint_A f(x,y)\,\mathrm dA}{\displaystyle\iint\mathrm dA}[/tex]
For both integrals, convert the region to polar coordinates. We have
[tex]\displaystyle\iint_Af(x,y)\,\mathrm dA=\int_{\theta=0}^{\theta=2\pi}\int_{r=a}^{r=b}\frac7{r^2}r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=14\pi\displaystyle\int_{r=a}^{r=b}\frac{\mathrm dr}r[/tex]
[tex]=14\pi\ln\dfrac ba[/tex]
[tex]\displaystyle\iint_A\mathrm dA=\int_{\theta=0}^{\theta=2\pi}\int_{r=a}^{r=b}r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\pi(b^2-a^2)[/tex]
and so the average value is
[tex]\dfrac{14}{b^2-a^2}\ln\dfrac ba[/tex]