Find the average value of the function f(x, y) = 7/ x2 + y2 on the annular region a2 ≤ x2 + y2 ≤ b2, where 0 < a <
b.

Respuesta :

Denote the annular region by [tex]A[/tex]. The average value of [tex]f(x,y)=\dfrac7{x^2+y^2}[/tex] over [tex]A[/tex] is given by

[tex]\dfrac{\displaystyle\iint_A f(x,y)\,\mathrm dA}{\displaystyle\iint\mathrm dA}[/tex]

For both integrals, convert the region to polar coordinates. We have

[tex]\displaystyle\iint_Af(x,y)\,\mathrm dA=\int_{\theta=0}^{\theta=2\pi}\int_{r=a}^{r=b}\frac7{r^2}r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=14\pi\displaystyle\int_{r=a}^{r=b}\frac{\mathrm dr}r[/tex]
[tex]=14\pi\ln\dfrac ba[/tex]

[tex]\displaystyle\iint_A\mathrm dA=\int_{\theta=0}^{\theta=2\pi}\int_{r=a}^{r=b}r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\pi(b^2-a^2)[/tex]

and so the average value is

[tex]\dfrac{14}{b^2-a^2}\ln\dfrac ba[/tex]