Respuesta :
(a). The solutions are 0 and ⁸/₃.
(b). The solutions are 1 and ¹³/₃.
(c). The equation has no solution.
(d). The only solution is ²¹/₂₀.
(e). The equation has no solution.
Further explanation
These are the problems with the absolute value of a function.
For all real numbers x,
[tex]\boxed{ \ |f(x)|=\left \{ {{f(x), for \ f(x) \geq 0} \atop {-f(x), for \ f(x) < 0}} \right. \ }[/tex]
Problem (a)
|4 – 3x| = |-4|
|4 – 3x| = 4
Case 1
[tex]\boxed{ \ 4 - 3x \geq 0 \ } \rightarrow \boxed{ \ 4\geq 3x \ } \rightarrow \boxed{ \ x\leq \frac{4}{3} \ }[/tex]
For 4 – 3x = 4
Subtract both sides by four.
-3x = 0
Divide both sides by -3.
x = 0
Since [tex]\boxed{ \ 0\leq \frac{4}{3} \ }[/tex], x = 0 is a solution.
Case 2
[tex]\boxed{ \ 4 - 3x < 0 \ } \rightarrow \boxed{ \ 4 < 3x \ } \rightarrow \boxed{ \ x > \frac{4}{3} \ }[/tex]
For -(4 – 3x) = 4
-4 + 3x = 4
Add both sides by four.
3x = 8
Divide both sides by three.
[tex]x = \frac{8}{3}[/tex]
Since [tex]\boxed{ \ \frac{8}{3} > \frac{4}{3} \ }[/tex], [tex]\boxed{ \ x = \frac{8}{3} \ }[/tex] is a solution.
Hence, the solutions are [tex] \boxed{ \ 0 \ and \ \frac{8}{3} \ }[/tex]
————————
Problem (b)
2|3x - 8| = 10
Divide both sides by two.
|3x - 8| = 5
Case 1
[tex]\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }[/tex]
For 3x - 8 = 5
Add both sides by eight.
3x = 13
Divide both sides by three.
[tex]x = \frac{13}{3}[/tex]
Since [tex]\boxed{ \ \frac{13}{3} \geq \frac{4}{3} \ }[/tex], [tex]\boxed{ \ x = \frac{13}{3} \ }[/tex] is a solution.
Case 2
[tex]\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }[/tex]
For -(3x – 8) = 5
-3x + 8 = 5
Subtract both sides by eight.
-3x = -3
Divide both sides by -3.
x = 1
Since [tex]\boxed{ \ 1 < \frac{8}{3} \ }[/tex], [tex]\boxed{ \ x = 1 \ }[/tex] is a solution.
Hence, the solutions are [tex] \boxed{ \ 1 \ and \ \frac{13}{3} \ }[/tex]
————————
Problem (c)
2x + |3x - 8| = -4
Subtracting both sides by 2x.
|3x - 8| = -2x – 4
Case 1
[tex]\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }[/tex]
For 3x – 8 = -2x – 4
3x + 2x = 8 – 4
5x = 4
[tex] x = \frac{4}{5} [/tex]
Since [tex]\boxed{ \ \frac{4}{5} \ngeq \frac{8}{3} \ }[/tex], [tex]\boxed{ \ x = \frac{4}{5} \ }[/tex] is not a solution.
Case 2
[tex]\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }[/tex]
For -(3x - 8) = -2x – 4
-3x + 8 = -2x – 4
2x – 3x = -8 – 4
-x = -12
x = 12
Since [tex]\boxed{ \ 12 \nless \frac{8}{3} \ }[/tex], [tex]\boxed{ \ x = 12 \ }[/tex] is not a solution.
Hence, the equation has no solution.
————————
Problem (d)
5|2x - 3| = 2|3 - 5x|
Let’s take the square of both sides. Then,
[5(2x - 3)]² = [2(3 - 5x)]²
(10x – 15)² = (6 – 10x)²
(10x - 15)² - (6 - 10x)² = 0
According to this formula [tex]\boxed{ \ a^2 - b^2 = (a + b)(a - b) \ }[/tex]
[tex][(10x - 15) + (6 - 10x)][(10x - 15) - (6 - 10x)]] = 0[/tex]
(-9)(20x - 21) = 0
Dividing both sides by -9.
20x - 21 = 0
20x = 21
[tex]x = \frac{21}{20}[/tex]
The only solution is [tex]\boxed{ \ \frac{21}{20} \ }[/tex]
————————
Problem (e)
2x + |8 - 3x| = |x - 4|
We need to separate into four cases since we don’t know whether 8 – 3x and x – 4 are positive or negative. We cannot square both sides because there is a function of 2x.
Case 1
- 8 – 3x is positive (or 8 - 3x > 0)
- x – 4 is positive (or x - 4 > 0)
2x + 8 – 3x = x – 4
8 – x = x – 4
-2x = -12
x = 6
Substitute x = 6 into 8 – 3x ⇒ 8 – 3(6) < 0, it doesn’t work, even though when we substitute x = 6 into x - 4 it does work.
Case 2
- 8 – 3x is positive (or 8 - 3x > 0)
- x – 4 is negative (or x - 4 < 0)
2x + 8 – 3x = -(x – 4)
8 – x = -x + 4
x – x = = 4 - 8
It cannot be determined.
Case 3
- 8 – 3x is negative (or 8 - 3x < 0)
- x – 4 is positive. (or x - 4 > 0)
2x + (-(8 – 3x)) = x – 4
2x – 8 + 3x = x - 4
5x – x = 8 – 4
4x = 4
x = 1
Substitute x = 1 into 8 - 3x, [tex]\boxed{ \ 8 - 3(1) \nless 0 \ }[/tex], it doesn’t work. Likewise, when we substitute x = 1 into x – 4, [tex]\boxed{ \ 1 - 4 \not> 0 \ }[/tex]
Case 4
- 8 – 3x is negative (or 8 - 3x < 0)
- x – 4 is negative (or x - 4 < 0)
2x + (-(8 – 3x)) = -(x – 4)
2x – 8 + 3x = -x + 4
5x + x = 8 – 4
6x = 4
[tex]\boxed{ \ x=\frac{4}{6} \rightarrow x = \frac{2}{3} \ }[/tex]
Substitute [tex]x = \frac{2}{3} \ into \ 8-3x[/tex], [tex]\boxed{ \ 8 - 3 \bigg(\frac{2}{3}\bigg) \not< 0 \ }[/tex], it doesn’t work. Even though when we substitute [tex]x = \frac{2}{3} \ into \ x-4[/tex], [tex]\boxed{ \ \bigg(\frac{2}{3}\bigg) - 4 < 0 \ }[/tex] it does work.
Hence, the equation has no solution.
Learn more
- The inverse of a function https://brainly.com/question/3225044
- The piecewise-defined functions https://brainly.com/question/9590016
- The composite function https://brainly.com/question/1691598
Keywords: hitunglah nilai x, the equation, absolute value of the function, has no solution, case, the only solution
The solutions are as follows:
(a): [tex]\fbox{\begin\\\ \math x=0\ \text{and}\ x=\frac{8}{3}\\\end{minispace}}[/tex]
(b): [tex]\fbox{\begin\\\ \math x=1\ \text{and}\ x=\frac{13}{3}\\\end{minispace}}[/tex]
(c): [tex]\fbox{\begin\\\ No solution\\\end{minispace}}[/tex]
(d): [tex]\fbox{\begin\\\ \math x=\frac{21}{20}\\\end{minispace}}[/tex]
(e): [tex]\fbox{\begin\\\ No solution\\\end{minispace}}[/tex]
Further explanation:
The problem is based on the concept of modulus function.
Modulus function is defined as a function which always gives a positive output for all real value of [tex]x[/tex].
Part (a):
The equation in part (a) is as follows:
[tex]|4-3x|=|-4|[/tex]
For the above equation two cases are formed.
Case 1: [tex](x>\frac{4}{3})\rightarrow|4-3x|=-(4-3x)[/tex].
[tex]\begin{aligned}-(4-3x)&=4\\-4+3x&=4\\3x&=8\\x&=\frac{8}{3}\end{aligned}[/tex]
This implies that if [tex]x>\dfrac{4}{3}[/tex] then [tex]x=\frac{8}{3}[/tex].
Case 2:
[tex](x<\frac{4}{3})\rightarrow|4-3x|=(4-3x)[/tex].
[tex]\begin{aligned}(4-3x)&=4\\-3x&=4-4\\-3x&=0\\x&=0\end{aligned}[/tex]
This implies that if [tex]x<\frac{4}{3}[/tex] then [tex]x=0[/tex].
Part (b):
The equation in part (b) is as follows:
[tex]2|3x-8|=10[/tex]
Further solve the above equation.
[tex]\begin{aligned}2|3x-8|&=10\\|3x=8|&=\frac{10}{2}\\|3x-8|&=5\end{aligned}[/tex]
For the above equation two cases are formed.
Case 1: [tex](x>\frac{8}{3})\rightarrow|3x-8|=3x-8[/tex].
[tex]\begin{aligned}3x-8&=5\\3x&=5+8\\3x&=13\\x&=\frac{13}{3}\end{aligned}[/tex]
This implies that if [tex]x>\frac{8}{3}[/tex] then [tex]x=\frac{13}{3}[/tex].
Case 2: [tex](x<\frac{8}{3})\rightarrow|3x-8|=-(3x-8)[/tex].
[tex]\begin{aligned}-(3x-8)&=5\\-3x+8&=5\\-3x&=5-8\\-3x&=-3\\x&=1\end{aligned}[/tex]
This implies that if [tex]x<\frac{8}{3}[/tex] then [tex]x=1[/tex].
Part (c):
The equation in part (c) is as follows:
[tex]2x+|3x-8|=-4[/tex]
For the above equation two cases are formed.
Case 1: [tex](x>\frac{8}{3})\rightarrow|3x-8|=3x-8[/tex].
[tex]\begin{aligned}2x+3x-8&=-4\\5x&=-4+8\\5x&=4\\x&=\frac{4}{5}\end{aligned}[/tex]
The value of [tex]x[/tex] cannot be equal to [tex]\frac{4}{5}[/tex] because as assumed above [tex]x>\frac{8}{3}[/tex] and [tex]\frac{4}{5}<\frac{8}{3}[/tex] so due to contradiction the solution [tex]x=\frac{4}{5}[/tex] is discarded.
Case 2: [tex](x<\frac{8}{3})\rightarrow|3x-8|=-(3x-8)[/tex].
[tex]\begin{aligned}2x-(3x-8)&=-4\\2x-3x+8&=-4\\-x&=-12\\x&=12\end{aligned}[/tex]
The value of [tex]x[/tex] cannot be equal to [tex]12[/tex] because as assumed above [tex]x<\frac{8}{3}[/tex] and [tex](12)>\farc{8}{3}[/tex] so due to contradiction the solution [tex]x=12[/tex] is discarded.
Part (d):
The equation in part (d) is as follows:
[tex]5|2x-3|=2|3-5x| [/tex]
Square both the side in the above equation.
[tex]\begin{aligned}(5|2x-3|)2&=(2|3-5x|)2\\(10x-15)2&=(2(3-5x))2\\(10x-15)2&=(6-10x)2\\(10x-15)2-(6-10x)2&=0\\(10x-15+6-10x)(10x-15-6+10x)&=0\\(-9)(20x-21)&=0\\(20x-21)&=0\\20x&=21\\x&=\frac{21}{20}\end{aligned}[/tex]
Part (e):
The equation in part (e) is as follows:
[tex]2x+|8-3x|=|x-4|[/tex] (4)
For the above equation four cases are formed.
Case 1: [tex](x>4 \rightarrow |x-4|=x-4)[/tex] and [tex](x<\frac{8}{3})\rightarrow|8-3x|=8-3x[/tex].
[tex]\begin{aligned}2x+8-3x&=x-4\\-x+8&=x-4\\2x&=12\\x&=6\end{aligned}[/tex]
The value of [tex]x[/tex] cannot be equal to [tex]6[/tex] because as assumed above [tex]x<\frac{8}{3}[/tex] so, due to contradiction the solution [tex]x=6[/tex] is discarded.
Case 2: [tex]x<4\rightarrow|x-4|=-(x-4)[/tex] and [tex]x<\frac{8}{3}\rightarrow|8-3x|=8-3x[/tex].
[tex]\begin{aligned}2x+8-3x&=-(x-4)\\-x+8&=-x+4\\-x+x&=-4\\0&=-4(\text {false})\end{aligned}[/tex]
Case 2 leads to a false statement so, no solution for this case.
Case 3: [tex]x>4\rightarrow|x-4|=x-4[/tex] and [tex]x>\frac{8}{3}\rightarrow|8-3x|=-(8-3x)[/tex].
[tex]\begin{aligned}2x-(8-3x)&=x-4\\2x-8+3x&=x-4\\4x&=4\\x&=1\end{aligned}[/tex]
The value of [tex]x[/tex] cannot be equal to [tex]1[/tex] because as assumed above [tex]x>4[/tex] so, due to contradiction the solution [tex]x=1[/tex] is discarded.
Case 4: [tex]x<4\rightarrow|x-4|=-(x-4)[/tex] and [tex](x>\frac{8}{3})\rightarrow|8-3x|=-(8-3x)[/tex].
[tex]\begin{aligned}2x-(8-3x)&=-(x-4)\\2x-8+3x&=-x+4\\6x&=12\\x&=2\end{aligned}[/tex]
The value of [tex]x[/tex] cannot be equal to [tex]2[/tex] because as assumed above [tex]x>\dfrac{8}{3}[/tex] so, due to contradiction the solution [tex]x=2[/tex] is discarded.
Learn more:
1. A problem on composite function
https://brainly.com/question/2723982
2. A problem to find radius and center of circle
https://brainly.com/question/9510228
Answer details:
Grade: High school
Subject: Mathematics
Chapter: Functions
Keywords: Functions, modulus function, absolute function, domain, range, intervals, equation, graph, curve, relation, |4-3x|=|-4|, 2x+|8-3x|=|x-4|, 5|2x-3|=2|3-5x|, 2x+|3x-8|=-4, solutions, Hitunglah nilai, memenuhi persmaan.