Respuesta :
check the picture below.
thus, if one side on the square is x - x², then the area for the square is (x - x²)(x - x²), or (x - x²)²
now... what is the "x" value for the region, let's check their intersection.
[tex]\bf \begin{cases} y=x\\ y=x^2 \end{cases}\implies x=x^2\implies 0=x^2-x\implies 0=x(x-1) \\\\\\ x= \begin{cases} 0\\ 1 \end{cases}\\\\ -------------------------------\\\\ \displaystyle \int\limits_{0}^{1}\ (x-x^2)^2\cdot dx\implies \int\limits_{0}^{1}\ (x^2-2x^3+x^4)\cdot dx \\\\\\ \cfrac{x^2}{2}-\cfrac{2x^4}{4}+\cfrac{x^5}{5}\implies \left. \cfrac{x^2}{2}-\cfrac{x^4}{2}+\cfrac{x^5}{5} \right]_{0}^{1}\implies \left[ \cfrac{1}{2}-\cfrac{1}{2}+\cfrac{1}{5} \right]-[0]\implies \cfrac{1}{5}[/tex]
thus, if one side on the square is x - x², then the area for the square is (x - x²)(x - x²), or (x - x²)²
now... what is the "x" value for the region, let's check their intersection.
[tex]\bf \begin{cases} y=x\\ y=x^2 \end{cases}\implies x=x^2\implies 0=x^2-x\implies 0=x(x-1) \\\\\\ x= \begin{cases} 0\\ 1 \end{cases}\\\\ -------------------------------\\\\ \displaystyle \int\limits_{0}^{1}\ (x-x^2)^2\cdot dx\implies \int\limits_{0}^{1}\ (x^2-2x^3+x^4)\cdot dx \\\\\\ \cfrac{x^2}{2}-\cfrac{2x^4}{4}+\cfrac{x^5}{5}\implies \left. \cfrac{x^2}{2}-\cfrac{x^4}{2}+\cfrac{x^5}{5} \right]_{0}^{1}\implies \left[ \cfrac{1}{2}-\cfrac{1}{2}+\cfrac{1}{5} \right]-[0]\implies \cfrac{1}{5}[/tex]

Answer: Volume (V) = 1/30
Step-by-step explanation:
Pictorial image can be seen below.
The Volume of the solid is evaluated as,
Volume (V) = ∫_(x=0)^1▒〖(x-x∧2)∧2dx〗
V = ∫_(x=0)^1▒〖(x∧2+x∧4-2x∧3)dx〗
V = [(x∧3)/3+(x∧5)/5-2((x∧4)/4) ]x=0 to 1
V = [1/3 + 1/5 -1/2]
V = (10+6-15)/30
V = 1/30
Therefore, the volume of the solid is
Volume (V) = 1/30
I hope this helps, Cheers.
