Respuesta :

[tex]f(x + 1) = (5/2)*f(x) f(x + 1) = 2.5*f(x), f(1) = 3.2 f(2) = 2.5f(1) = 2.5*3.2 = 8 f(3) = 2.5f(2) = 2.5*8 = 20 f(4) = 2.5f(3) = 2.5*20 = 50 f(5) = 2.5f(4) = 2.5*50 = 125[/tex]

Answer:

[tex]f(5)=125[/tex]

Step-by-step explanation:

The complete question is

What is f(5) if f(1) = 3.2 and f(x + 1) =5/2 (f(x))?

By given,

[tex]f(1)=3.2[/tex] and [tex]f(x+1)=\frac{5}{2}(f(x))[/tex]

Now, we need to replace one be one until we get [tex]f(5)[/tex], because the given function is a sequence, so

For [tex]x=1[/tex]

[tex]f(x+1)=\frac{5}{2}(f(x))[/tex]

[tex]f(1+1)=\frac{5}{2}(f(1))\\f(2)=2.5(3.2)=8[/tex]

Then, for [tex]x=2[/tex]

[tex]f(2+1)=\frac{5}{2}(f(2))\\f(3)=2.5(8)=20[/tex]

We repeat the process until we get [tex]f(5)[/tex],

For [tex]x=3[/tex]

[tex]f(3+1)=\frac{5}{2}(f(3))\\f(4)=2.5(20)=50[/tex]

For [tex]x=4[/tex]

[tex]f(4+1)=\frac{5}{2}(f(4))\\f(5)=2.5(50)=125[/tex]

Therefore, if [tex]f(1)=3.2[/tex]  and [tex]f(x+1)=\frac{5}{2}(f(x))[/tex], then [tex]f(5)=2.5(50)=125[/tex]