Respuesta :
Rectangular form of z is z = 3 + 2i
Polar form of complex number is (r , [tex]\theta[/tex]).
In general if z = x + iy
[tex]r = \sqrt{x^2 + y^2} [/tex]
[tex]\theta = tan^{-1} \frac{y}{x} [/tex]
So in given complex number z = 3 + 2i
So r is
[tex]r = \sqrt{(3)^2 + (2)^2} [/tex]
[tex]= \sqrt{9 + 4 } = \sqrt{13} [/tex]
[tex]\theta = tan^{-1} ( \frac{y}{x}) = tan^{-1} ( \frac{2}{3}} [/tex]
[tex]= 33.703[/tex] degree.
So the rectangular form is [tex]( \sqrt{13} , 33.703 [/tex] degree ).
Polar form of complex number is (r , [tex]\theta[/tex]).
In general if z = x + iy
[tex]r = \sqrt{x^2 + y^2} [/tex]
[tex]\theta = tan^{-1} \frac{y}{x} [/tex]
So in given complex number z = 3 + 2i
So r is
[tex]r = \sqrt{(3)^2 + (2)^2} [/tex]
[tex]= \sqrt{9 + 4 } = \sqrt{13} [/tex]
[tex]\theta = tan^{-1} ( \frac{y}{x}) = tan^{-1} ( \frac{2}{3}} [/tex]
[tex]= 33.703[/tex] degree.
So the rectangular form is [tex]( \sqrt{13} , 33.703 [/tex] degree ).
My answers have two options with sqr root of 13. Of the two which could it be?
z=sqr rt of 13(cos56 + i sin56)
z=sqr rt of 13(cos34 + i sin34)