First note that [tex]\mathbf f(x,y)=\langle4xy^3,6x^2y^2\rangle[/tex] is continuous, which means that there is some scalar function [tex]f(x,y)[/tex] whose gradient is [tex]\mathbf f(x,y)[/tex]. In other words, [tex]\mathbf f(x,y)[/tex] is conservative, and so the gradient theorem applies here, which means the value of the line integral is given by [tex]f(2,1)-f(0,0)[/tex].
So we look for such a function [tex]f(x,y)[/tex]:
[tex]\dfrac{\partial f}{\partial x}=4xy^3[/tex]
[tex]\implies f=\displaystyle\int4xy^3\,\mathrm dx[/tex]
[tex]f=2x^2y^3+g(y)[/tex]
[tex]\dfrac{\partial f}{\partial y}=\dfrac{\partial(2x^2y^3+g(y))}{\partial y}[/tex]
[tex]6x^2y^2=6x^2y^2+g'(y)[/tex]
[tex]0=g'(y)[/tex]
[tex]\implies g(y)=C[/tex]
[tex]\implies f(x,y)=2x^2y^3+C[/tex]
Thus by the gradient theorem, the value of the line integral is
[tex]\displaystyle\int_C\mathbf f\cdot\mathrm d\mathbf r=f(2,1)-f(0,0)=8[/tex]