Respuesta :

assumin ya meant
[tex]f(x)=\frac{x-4}{x^2+13x+36}[/tex]

to solve, fimplify then set the denomenator equal to 0

[tex]f(x)=\frac{x-4}{x^2+13x+36}=\frac{x-4}{(x+4)(x+9)}[/tex]
hum, no simplificatoin today

so set denom equal to 0
(x+4)(x+9)=0
x+4=0
x=-4

x+9=0
x=-9

so vertical assemtotes at x=-9 and x=-4

Answer:

Vertical asymptote at [tex]x= -9 \ and \ x=-4[/tex]

Step-by-step explanation:

Identify the vertical asymptotes of [tex]\frac{x-4}{x^2+13x+36}[/tex]

To find vertical asymptote we set the denominator =0 and solve for x

Set [tex]x^2+13x+36=0[/tex] and solve for x

now we factor x^2 +13x+36

Product is 36 and sum is 13

[tex]9 \cdot  4=36[/tex]

[tex]9+4=13[/tex]

so the equation becomes

[tex](x+9)(x+4)=0[/tex]

Now set each factor=0 and solve for x

[tex]x+9=0, x=-9[/tex]

[tex]x+4=0, x=-4[/tex]

Vertical asymptote at [tex]x= -9 \ and \ x=-4[/tex]