Respuesta :

sin(a)= [tex] \frac{3}{5} [/tex]

To find sin(2a) = 2*sin(a)*cos(a), we ned to find cos(a)

We know that,

sin²(a) + cos²(a) = 1

cos(a) = [tex] \sqrt{( 1- sin^2 a)} [/tex]

cos(a) = [tex] \sqrt{1- ( \frac{3}{5} )^2} = \sqrt{1- \frac{9}{25}} = \sqrt{ \frac{16}{25}} = \frac{4}{5} [/tex]

Thus, cos(a) = +- [tex] \frac{4}{5} [/tex]

We know a is in second quadrant and thus cos(a) is -[tex] \frac{4}{5} [/tex] because cosine is always negative in the second quadrant.

Therefore,

sin(2a) = 2*sin(a)*cos(a) = [tex]2* \frac{3}{5} * \frac{-4}{5} = \frac{-24}{25} [/tex]