Respuesta :

for this problem you need to know that the derivative is an associative operation, so f(x)dx+g(x)dx=[f(x)+g(x)]dx.
start by solving your two equations for f(x)dx and g(x)dx. this gets you
[tex]9f(x)dx=350 --\ \textgreater \ f(x)dx= \frac{350}{9} \\ 9g(x)dx=140 --\ \textgreater \ g(x)dx= \frac{140}{9} [/tex].
now you can change your equation you need to evaluate into something you can evaluate, using the property I explained to start.
[tex]9[3f(x)+4g(x)]dx = 9[3(f(x)dx)+4(g(x)dx)][/tex].
now you know the values of f(x)dx and g(x)dx, so you can plug those in
[tex]9[3( \frac{350}{9})+4(\frac{140}{9})] \\ \\ 3(350) +4(140) \\ \\ 1610[/tex]