Respuesta :

22)

[tex]\bf \textit{let's say that }sin^{-1}\left( \frac{2}{3} \right)=\theta \textit{ this means }sin(\theta )=\cfrac{2}{3}\qquad so \\\\\\ sin\left[ sin^{-1}\left( \frac{2}{3} \right) \right]\implies sin[\theta ]\implies \cfrac{2}{3}[/tex]

23)

[tex]\bf sec^{-1}\left( \frac{5}{2} \right)=\theta \textit{ this means }sec(\theta )=\cfrac{5}{2}\cfrac{\leftarrow hypotenuse}{\leftarrow adjacent} \\\\\\ \textit{let's find the \underline{opposite side} then}[/tex]

[tex]\bf \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2-2^2}=b\implies \boxed{\pm \sqrt{21}=b}\\\\ -------------------------------\\\\ tan(\theta)=\cfrac{opposite}{adjacent}\qquad \qquad tan(\theta)=\cfrac{\pm\sqrt{21}}{2}[/tex]

again, we dunno what quadrant the angle is at, thus the +/- are both valid.
ACCESS MORE