Respuesta :

Answer:

Exponential function is of the form: [tex]y =ab^x[/tex]

where a  is the initial value and b is the growth factor.

  • If b> 1, then the function is exponential growth function.
  • If 0<b<1, then the function is exponential decay function.

Given the parent function:

[tex]f(x)=y = (\frac{3}{2})^x[/tex]            ....[1]

This function is an exponential growth function.

The rule of reflection over y-axis:

[tex](x, y) \rightarrow (-x, y)[/tex]

Apply the rule on f(x) we get;

[tex](\frac{3}{2})^{-x} = (\frac{2}{3})^x =g(x)[/tex]

Therefore, the function [tex]g(x) =(\frac{2}{3})^x[/tex] is the graph of the function f(x) reflected over y-axis.

The graph of the function g(x) is reflected over the y-axis to make the graph of the function f(x) and this can be determined by using the rules of transformation.

Given:

  • [tex]f(x) = \left(\dfrac{3}{2}\right)^x[/tex]
  • [tex]g(x) = \left(\dfrac{2}{3}\right)^x[/tex]

The following steps can be used in order to compare the graphs of the given function:

  • Step 1 - Write the equations of the given exponential functions.

                     [tex]f(x) = \left(\dfrac{3}{2}\right)^x[/tex]     --- (1)

                     [tex]g(x) = \left(\dfrac{2}{3}\right)^x[/tex]     --- (2)

  • Step 2 - Now, replace 'x' with '-x' in the expression (1).

                      [tex]f(-x) = \left(\dfrac{3}{2}\right)^{-x}[/tex]

  • Step 3 - Simplify the above expression.

                         [tex]f(-x)=\left(\dfrac{2}{3}\right)^x[/tex]

                          [tex]f(-x)=g(x)[/tex]

  • Step 4 - So, from the above steps, it can be concluded that the graph of the function g(x) is reflected over the y-axis to make the graph of the function f(x).

For more information, refer to the link given below:

https://brainly.com/question/13710437