Respuesta :

Property of inverse functions:
[tex]f(f^{-1}(x)) = x \\ \\ f^{-1}(f(x)) = x[/tex]

Therefore the answer to both is True.

Answer:

True

Step-by-step explanation:

Given : Expression [tex]\csc^{-1}[\csc(-\frac{\pi}{4})]=-\frac{\pi}{4}[/tex] and [tex]\sec[{\sec^-1}(\sqrt3)]=\sqrt3[/tex]

To find: The given expression are true or false?

Solution :

In the given expression,

Applying Inverse trigonometric functions,

i.e, [tex]f(f^{-1}x)=x[/tex]

or [tex]\csc^{-1} (\csc x)=x\\\csc(\csc^{-1} x)=x[/tex]

and this true for all trigonometric functions.

So, if apply in the given expression the resultant we get is true.

[tex]\csc^{-1}[\csc(-\frac{\pi}{4})]=-\frac{\pi}{4}[/tex] is true

and [tex]\sec[{\sec^-1}(\sqrt3)]=\sqrt3[/tex] is true

Therefore, The given expressions are true.