Respuesta :

[tex]\bf r\left[ cos\left( \theta \right)+i\ sin\left( \theta \right) \right]\quad \begin{cases} x=rcos(\theta )\\ y=rsin(\theta ) \end{cases}\implies \begin{array}{llll} x&,&y\\ a&&b \end{array}\implies a+bi\\\\ -------------------------------\\\\ 2\left[ cos\left( 135^o\right)+i\ sin\left( 135^o\right) \right]\impliedby r=2\qquad \theta =135^o \\\\\\ 2\left( -\frac{\sqrt{2}}{2} \right)+i\ 2\left( \frac{\sqrt{2}}{2}\right)\implies -\sqrt{2}+\sqrt{2}\ i[/tex]

[tex]\bf -------------------------------\\\\ 3\left[ cos\left( 120^o\right)+i\ sin\left( 120^o\right) \right]\impliedby r=3\qquad \theta =120^o \\\\\\ 3\left( -\frac{1}{2} \right)+i\ 3\left( \frac{\sqrt{3}}{2}\right)\implies -\frac{3}{2}+\frac{3\sqrt{3}}{2}\ i[/tex]

[tex]\bf \\\\ -------------------------------\\\\ 5\left[ cos\left( \frac{5\pi }{4}\right)+i\ sin\left( \frac{5\pi }{4}\right) \right]\impliedby r=5\qquad \theta =\frac{5\pi }{4} \\\\\\ 5\left( -\frac{\sqrt{2}}{2} \right)+i\ 5\left( -\frac{\sqrt{2}}{2}\right)\implies -\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\ i[/tex]

[tex]\bf -------------------------------\\\\ 4\left[ cos\left( \frac{5\pi }{3}\right)+i\ sin\left( \frac{5\pi }{3}\right) \right]\impliedby r=4\qquad \theta =\frac{5\pi }{3} \\\\\\ 4\left( \frac{1}{2} \right)+i\ 4\left( -\frac{\sqrt{3}}{2}\right)\implies \frac{1}{2}-\frac{\sqrt{3}}{2}\ i[/tex]

The complex number 2(cos(135)+i sin(135)) in the polar form is -√2 + i√2 after calculating.

What is a complex number?

It is defined as the number which can be written as x+iy where x is the real number or real part of the complex number and y is the imaginary part of the complex number and i is the iota which is nothing but a square root of -1.

We know:

[tex]\rm Z= r(cos\theta + i \ sin\theta )[/tex] is the complex number in polar form.

a) 2(cos(135)+i sin(135))

Here r = 2

x = rcosθ

y = rsinθ

θ = 135 degree

By plugging and solving:

x = -√2

y = √2

Complex number in polar form:

= x + iy = -√2 + i√2

Similarly, we can change the rest of the complex number into the polar form.

b) 3(cos(120))+i sin(120))  = -3/2 +i 3√3/2

c) 5(cos(5pi/4)+i sin(5pi/4)) = -√2/2 -i √2/2

d) 4(cos(5pi/3)+i sin (5pi/3)) = 1/2 -i √3/2

Thus, the complex number 2(cos(135)+i sin(135)) in the polar form is -√2 + i√2 after calculating.

Learn more about the complex number here:

brainly.com/question/10251853

#SPJ2

ACCESS MORE