Respuesta :

To prove this identity, use change of base formula:
[tex]log_b (x) = \frac{ln x}{ln b}[/tex]

Apply to left side:
[tex](\frac{ln b}{ln a})*(\frac{ln c}{ln b}) [/tex]

Multiply, Cancel the ln(b) factors
[tex]= \frac{ln c}{ln a}[/tex]

Rewrite in log form:
[tex]= log_a (c)[/tex]

This equals Right side and identity is verified.

Answer:

Prove that

[tex]log_{a}(b) \times log_{b} (c)=log_{a} (c)[/tex]

To demonstarte this, we need to use the following property

[tex]log_{b}(x)=\frac{log_{d}(x) }{log_{d}(b) }[/tex]

So, in this case,

[tex]log_{b}(c)=\frac{log_{a}(c) }{log_{a}(b) }[/tex]

Repling this in the first expression, we have

[tex]log_{a}(b) \times\frac{log_{a}(c) }{log_{a}(b) }=log_{a} (c)[/tex]

Multiplying and dividing, we have

[tex]\frac{log_{a}(b) \times log_{a}(c) }{log_{a}(b) }=log_{a}(c)[/tex]

[tex]\therefore log_{a}(c)= log_{a}(c)[/tex]

So, by using one property, we can demostrate the given expression.