Answer:
The initial population in the city before the epidemic broke out was 87455.
Step-by-step explanation:
The decay formula is: [tex]A=P(1-r)^t[/tex] , where [tex]P=[/tex] Initial amount, [tex]A=[/tex] Final amount, [tex]r=[/tex] rate of decay in decimal form and [tex]t=[/tex] time duration.
Here, [tex]A=25143,\ \ r=34\%=\frac{34}{100}=0.34,\ \ t=3\ hours[/tex]
Plugging these values into the above formula.....
[tex]25143=P(1-0.34)^3\\ \\ 25143=P(0.66)^3\\ \\ 25143=P(0.287496)\\ \\ P=\frac{25143}{0.287496}=87455.129...\approx 87455[/tex]
So, the initial population in the city before the epidemic broke out was 87455.