Respuesta :
Answer:
Part 1) Option A [tex]360\°[/tex]
Part 2) [tex]36\°[/tex]
Part 3) Option C [tex]24\°[/tex]
Part 4) option A [tex]60\°[/tex]
Part 5) [tex]50\°[/tex]
Step-by-step explanation:
Part 1) What is the sum of the exterior angles of a convex polygon?
we know that
The Exterior Angle Sum Theorem states that the exterior angles of any polygon will always add up to [tex]360[/tex] degrees
therefore
the answer part 1) is [tex]360\°[/tex]
Part 2) What is the measure of each exterior angle in a regular [tex]10[/tex]-sided polygon?
we know that
The sum of the exterior angles of any polygon will always add up to [tex]360[/tex] degrees
Let
x-----> the measure of each exterior angle in a regular [tex]10[/tex]-sided polygon
we have that
[tex]10x=360\°[/tex]
solve for x
[tex]x=360\°/10[/tex]
[tex]x=36\°[/tex]
Part 3) If each exterior angle or a regular polygon measures [tex]15\°[/tex], how many sides does the polygon have?
Let
x-----> the number of sides of the polygon
we have that
[tex]15\°x=360\°[/tex]
solve for x
[tex]x=360\°/15\°[/tex]
[tex]x=24\°[/tex]
Part 4) The exterior angles of a triangle measure x°, (2x)°, and (3x)°. What is the value of x?
Remember that
The sum of the exterior angles of any polygon will always add up to [tex]360[/tex] degrees
so
[tex]x\°+2x\°+3x\°=360\°[/tex]
solve for x
[tex]6x\°=360\°[/tex]
[tex]x=360\°/6[/tex]
[tex]x=60\°[/tex]
Part 5) The exterior angles of an octagon are 42°, 55°, 39°, 20°, 62°, 45°, and 47°. What is the measure of the eighth exterior angle?
Let
x-----> the measure of the eight exterior angle of the octagon
Remember that
The sum of the exterior angles of any polygon will always add up to [tex]360[/tex] degrees
we have that
[tex]42\°+55\°+39\°+20\°+62\°+45\°+47\°+x\°=360\°[/tex]
solve for x
[tex]310\°+x\°=360\°[/tex]
[tex]x=360\°-310\°[/tex]
[tex]x=50\°[/tex]