contestada

The coordinates of the vertices of a quadrilateral are R(-1,3), S(3,3), T(5,-1), and U(-2,-1). Find the perimeter of the quadrilateral. Round to the nearest tenth.

Respuesta :

The distance between 2 points P(a,b) and Q(c,d) is given by the formula:

[tex]|PQ|= \sqrt{ (a-c)^{2} + (b-d)^{2} } [/tex]

thus, the lengths of the sides of the quadrilateral can be calculated using the distance formula:

[tex]|RS|= \sqrt{ (-1-3)^{2} + (3-3)^{2}}=\sqrt{ 16 + 0}=4[/tex]   units


[tex]|ST|= \sqrt{ (3-5)^{2} + (3-(-1))^{2} }=\sqrt{ 4+16}=4.47[/tex]   units


[tex]|TU|= \sqrt{ (5-(-2))^{2} + (-1-(-1))^{2} }=\sqrt{ 49 + 0}=7[/tex]    units


[tex]|RU|= \sqrt{ (-1-(-2))^{2} + (3-(-1))^{2} }=\sqrt{ (1)^{2} + (4)^{2} }=4.12[/tex]   units

The perimeter of RSTU is 4+4.47+7+4.12=19.6


Answer: 19.6 units