y=f(g(x)) and [tex]y= \frac{8}{x^{2}}+4 [/tex]
our aim is to express f as a function of g, where g is a function itself, of x.
in the expression tex]y= \frac{8}{x^{2}}+4 [/tex] we may notice 2 functions:
the squaring x function, which may well be our g: [tex]g(x)= x^{2} [/tex]
and the "8 divided by x, +4" function: [tex]f(x)= \frac{8}{x}+4 [/tex]
check :
[tex]f(g(x))= \frac{8}{g(x)}+4 [/tex]
because whatever the input of f is, it divides it from 8, and adds 4 to the division.
since, [tex]g(x)= x^{2} [/tex],
[tex]f(g(x))= \frac{8}{g(x)}+4=\frac{8}{x^{2}}+4[/tex]
Answer:
[tex]g(x)= x^{2} [/tex]
[tex]f(x)= \frac{8}{x}+4 [/tex]