Respuesta :

y=f(g(x))      and      [tex]y= \frac{8}{x^{2}}+4 [/tex]


our aim is to express f as a function of g, where g is a function itself, of x.

in the expression tex]y= \frac{8}{x^{2}}+4 [/tex] we may notice 2 functions:

the squaring x function, which may well be our g: [tex]g(x)= x^{2} [/tex]

and the "8 divided by x, +4" function: [tex]f(x)= \frac{8}{x}+4 [/tex]


check : 

[tex]f(g(x))= \frac{8}{g(x)}+4 [/tex]

because whatever the input of f is, it divides it from 8, and adds 4 to the division. 

since, [tex]g(x)= x^{2} [/tex], 

[tex]f(g(x))= \frac{8}{g(x)}+4=\frac{8}{x^{2}}+4[/tex]


Answer:

[tex]g(x)= x^{2} [/tex]

[tex]f(x)= \frac{8}{x}+4 [/tex]
ACCESS MORE