Answer:
355.3 square units
Step-by-step explanation:
To find the surface area of a rectangular prism, we can use the following formula:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Surface area rectangular prism}}\\\\S.A.=2(bl+hl+hb)\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$l$ is the length of the base.}\\ \phantom{ww}\bullet\;\textsf{$b$ is the breadth of the base.}\\ \phantom{ww}\bullet\;\textsf{$h$ is the height of the prism.}\end{array}}[/tex]
In this case:
- [tex]l = 5.5[/tex]
- [tex]b = 14.3[/tex]
- [tex]h = 5.0[/tex]
Substitute the given values into the formula and solve for SA:
[tex]S.A.=2(14.3 \times 5.5+5.0 \times 5.5+5.0 \times 14.3)[/tex]
[tex]S.A.=2(78.65+27.5+71.5)[/tex]
[tex]S.A.=2(177.65)[/tex]
[tex]S.A.=355.3\; \sf square\;units[/tex]
Therefore, the surface area of the given rectangular prism in square units is:
[tex]\huge\boxed{\boxed{355.3}}[/tex]