Respuesta :

Answer:

[tex]\textsf{Vertices:}\quad (0,- 2\sqrt{6})\;\;\textsf{and}\;\;(0,2\sqrt{6})[/tex]

[tex]\textsf{Co-vertices:}\quad (-3\sqrt{2},0)\;\;\textsf{and}\;\;(3\sqrt{2},0)[/tex]

[tex]\textsf{Foci:}\quad (0,-\sqrt{42})\;\;\textsf{and}\;\;(0,\sqrt{42})[/tex]

[tex]\textsf{Asymptotes:}\quad y =\dfrac{2\sqrt{3}}{3}x\;\;\textsf{and}\;\;y =-\dfrac{2\sqrt{3}}{3}x[/tex]

Step-by-step explanation:

Given equation of a hyperbola:

[tex]\dfrac{y^2}{24}-\dfrac{x^2}{18}=1[/tex]

As the y²-term of the given equation is positive, the transverse axis is vertical, and so the hyperbola is vertical (opening up and down).

The general equation of a vertical hyperbola is:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Vertical hyperbola}}\\\\\dfrac{(y-k)^2}{a^2}-\dfrac{(x-h)^2}{b^2}=1\\\\\textsf{where:}\\\phantom{ww}\;\bullet\;\textsf{$(h,k)$ is the center.}\\\phantom{ww}\;\bullet\;\textsf{$(h, k\pm a)$ are the vertices.}\\\phantom{ww}\;\bullet\;\textsf{$(h\pm b, k)$ are the co-vertices.}\\\phantom{ww}\;\bullet\;\textsf{$(h, k\pm c)$ are the foci where $c^2=a^2+b^2$}\\\phantom{ww}\;\bullet\;\textsf{$y =k\pm\left(\dfrac{a}{b}\right)(x-h)$ are the asymptotes.}\end{array}}[/tex]

In this case:

[tex]h = 0[/tex]

[tex]k = 0[/tex]

[tex]a^2 = 24\implies a=\sqrt{24}=2\sqrt{6}[/tex]

[tex]b^2 = 18\implies b=\sqrt{18}=3\sqrt{2}[/tex]

Substitute the values of h, k, a and b into the formulas for the vertices and co-vertices:

[tex]\textsf{Vertices:}\quad (h, k\pm a)&=(0,\pm 2\sqrt{6})[/tex]

[tex]\textsf{Co-vertices:}\quad (h\pm b,k)&=(\pm 3\sqrt{2},0)[/tex]

Find the value of c:

[tex]c^2=a^2+b^2[/tex]

[tex]c^2=24+18[/tex]

[tex]c^2=42[/tex]

[tex]c=\sqrt{42}[/tex]

Substitute the values of h, k, and c into the formula for the foci:

[tex]\textsf{Foci:}\quad (h, k\pm c)&=(0,\pm \sqrt{42})[/tex]

Substitute the values of h, k, a and b into the formulas for the asymptotes:

[tex]y =0\pm\left(\dfrac{2\sqrt{6}}{3\sqrt{2}}\right)(x-0)[/tex]

[tex]y =\pm\left(\dfrac{2\sqrt{6}\cdot \sqrt{2}}{3\sqrt{2}\cdot \sqrt{2}}\right)x[/tex]

[tex]y =\pm\left(\dfrac{2\sqrt{12}}{3\cdot 2}\right)x[/tex]

[tex]y =\pm\left(\dfrac{2\sqrt{2^2\cdot 3}}{3\cdot 2}\right)x[/tex]

[tex]y =\pm\left(\dfrac{2\sqrt{2^2}\sqrt{3}}{3\cdot 2}\right)x[/tex]

[tex]y =\pm\left(\dfrac{2\cdot 2\sqrt{3}}{3\cdot 2}\right)x[/tex]

[tex]y =\pm\dfrac{2\sqrt{3}}{3}x[/tex]

Ver imagen semsee45
msm555

Answer:

Vertices: [tex](0, 2\sqrt{6}) \textsf{ and} (0, -2\sqrt{6}) [/tex]

Foci: [tex] (0, \sqrt{42})\textsf{ and } (0, -\sqrt{42}) [/tex]

Equation of asymptotes: [tex] y = \dfrac{2\sqrt{3}{3}}{3}x \textsf{ and } y = - \dfrac{2\sqrt{3}{3}}{3}x [/tex]

Step-by-step explanation:

The equation [tex] \dfrac{y^2}{24} - \dfrac{x^2}{18} = 1 [/tex] is in the standard form of a hyperbola:

[tex]\Large\boxed{\boxed{ \dfrac{y^2}{b^2} - \dfrac{x^2}{a^2} = 1}} [/tex]

where

  • [tex] a [/tex] and [tex] b [/tex] are the lengths of the transverse and conjugate axes, respectively.

For the equation [tex] \dfrac{y^2}{24} - \dfrac{x^2}{18} = 1 [/tex]:

  • [tex] a^2 = 18 [/tex] (since [tex] a^2 [/tex] is the denominator of [tex] x^2 [/tex]),
  • [tex] b^2 = 24 [/tex] (since [tex] b^2 [/tex] is the denominator of [tex] y^2 [/tex]).

This hyperbola has a vertical transverse axis because the term involving [tex] y^2 [/tex] is positive.

Vertices:

The vertices are the points where the hyperbola intersects its transverse axis. Since this hyperbola has a vertical transverse axis, the vertices are along the [tex] y [/tex]-axis.

The vertices are given by [tex] (0, \pm b) [/tex] .so in our case, the vertices are [tex] (0, \pm \sqrt{24}) = (0, \pm 2\sqrt{6} )[/tex].

Two vertices are:

[tex](0, 2\sqrt{6}) \textsf{ and} (0, -2\sqrt{6}) [/tex]

Foci:

The distance from the center to the foci is given by [tex] c = \sqrt{a^2 + b^2} [/tex].

In our case:

[tex] c = \sqrt{18 + 24}\\\\ = \sqrt{42} [/tex]

The foci are located along the transverse axis, so they're [tex] c [/tex] units above and below the center.

Therefore, the foci are at [tex] (0, \sqrt{42})\textsf{ and } (0, -\sqrt{42}) [/tex].

Asymptotes:

The asymptotes of a hyperbola have the equation:

[tex] y = \pm \dfrac{b}{a}x [/tex]

In our case, the equation becomes:

[tex] \begin{aligned} y &= \pm \dfrac{\sqrt{24}}{\sqrt{18}}x \\\\&= \pm \dfrac{\sqrt{2^2\cdot 6}}{\sqrt{3^2 \cdot 2}}x \\\\&= \pm \dfrac{2\sqrt{6}}{3\sqrt{2}}x \\\\&= \pm \dfrac{2\sqrt{6}}{3\sqrt{2}}x \cdot \dfrac{\sqrt{2}}{\sqrt{2}} \\\\&= \pm \dfrac{2\sqrt{6}\cdot \sqrt{2}}{3 \sqrt{2}\cdot \sqrt{2}} x \\\\&= \pm \dfrac{2\sqrt{6\cdot 2}}{3 \sqrt{2\cdot 2}}x \\\\&= \pm \dfrac{\cancel{2}\sqrt{2^2 \cdot 3}}{3\cdot \cancel{2}} x \\\\&= \pm \dfrac{2\sqrt{3}}{3}x \end{aligned}[/tex]

Thus, the equations of the asymptotes are [tex] y = \dfrac{2\sqrt{3}{3}}{3}x \textsf{ and } y = - \dfrac{2\sqrt{3}{3}}{3}x [/tex].

RELAXING NOICE
Relax