contestada

The terminal side of angle A in standard position goes through the point (9.3,8.6). Sketch the angle, compute the distance r, from the origin to the point, find sin A, cos A and tan A. Give answers to 3 significant digits.

Respuesta :

Answer:

To sketch the angle in standard position, we can use the coordinates (9.3, 8.6) to plot the point in the Cartesian plane. The angle is measured counterclockwise from the positive x-axis.

Now, let's calculate the distance \( r \) from the origin to the point (9.3, 8.6) using the distance formula:

\[ r = \sqrt{(x^2 + y^2)} \]

\[ r = \sqrt{(9.3^2 + 8.6^2)} \]

\[ r \approx \sqrt{(86.49 + 73.96)} \]

\[ r \approx \sqrt{160.45} \]

\[ r \approx 12.66 \]

Now, let's find the trigonometric ratios:

1. \( \sin A = \frac{y}{r} \)

\[ \sin A = \frac{8.6}{12.66} \]

\[ \sin A \approx 0.678 \]

2. \( \cos A = \frac{x}{r} \)

\[ \cos A = \frac{9.3}{12.66} \]

\[ \cos A \approx 0.735 \]

3. \( \tan A = \frac{y}{x} \)

\[ \tan A = \frac{8.6}{9.3} \]

\[ \tan A \approx 0.925 \]

So, summarizing the results to 3 significant digits:

- \( r \approx 12.7 \)

- \( \sin A \approx 0.678 \)

- \( \cos A \approx 0.735 \)

- \( \tan A \approx 0.925 \)

RELAXING NOICE
Relax