Respuesta :
Answer:
[tex]y'=\dfrac{20}{3}=6.667\; \sf (nearest\;thousandth)[/tex]
[tex]y''=\dfrac{126}{29}=4.345\; \sf (nearest\;thousandth)[/tex]
Step-by-step explanation:
Given function:
[tex]y^2+3+2x=14x^3[/tex]
To differentiate an equation that contains a mixture of x and y terms, we can use implicit differentiation.
Begin by placing d/dx in front of each term of the equation:
[tex]\dfrac{\text{d}}{\text{d}x}y^2+\dfrac{\text{d}}{\text{d}x}3+\dfrac{\text{d}}{\text{d}x}2x=\dfrac{\text{d}}{\text{d}x}14x^3[/tex]
Differentiate the terms in x only (and the constant term):
[tex]\dfrac{\text{d}}{\text{d}x}y^2+0+2=14\cdot 3x^{3-1}[/tex]
[tex]\dfrac{\text{d}}{\text{d}x}y^2+2=42x^2[/tex]
Use the chain rule to differentiate terms in y only.
In practice, this means differentiate with respect to y, and place dy/dx at the end:
[tex]2y\dfrac{\text{d}y}{\text{d}x}+2=42x^2[/tex]
Rearrange the resulting equation to make dy/dx the subject:
[tex]2y\dfrac{\text{d}y}{\text{d}x}=42x^2-2[/tex]
[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{42x^2-2}{2y}[/tex]
Simplify by dividing the numerator and denominator by 2:
[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{21x^2-1}{y}[/tex]
Therefore, the first derivative is:
[tex]\large\boxed{\boxed{y'=\dfrac{21x^2-1}{y}}}[/tex]
Now, substitute x = 1 and y = 3 to find the first derivative at point (1, 3):
[tex]y'=\dfrac{21(1)^2-1}{3}[/tex]
[tex]y'=\dfrac{20}{3}[/tex]
Rounding to the nearest thousandth gives:
[tex]y'=6.667[/tex]
[tex]\hrulefill[/tex]
To find the second derivative, we need to differentiate the first derivative using the quotient rule:
[tex]\boxed{\begin{array}{c}\underline{\textsf{Quotient Rule for Differentiation}}\\\\\textsf{If $y=\dfrac{u}{v}$ then:}\\\\\dfrac{\text{d}y}{\text{d}x}=\dfrac{v \dfrac{\text{d}u}{\text{d}x}-u\dfrac{\text{d}v}{\text{d}x}}{v^2}\\\\\end{array}}[/tex]
In this case:
[tex]u = 21x^2 - 1[/tex]
[tex]v = y[/tex]
Differentiate u and v separately:
[tex]\dfrac{\text{d}u}{\text{d}x} = 2\cdot21x^{2-1}-0=42x[/tex]
[tex]\dfrac{\text{d}v}{\text{d}x} = 1 \cdot \dfrac{\text{d}y}{\text{d}x} = \dfrac{\text{d}y}{\text{d}x}[/tex]
Now, put everything into the quotient rule formula:
[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{y \cdot 42x-(21x^2-1) \cdot \dfrac{\text{d}y}{\text{d}x}}{y^2}[/tex]
Simplify:
[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{42xy-(21x^2-1) \dfrac{\text{d}y}{\text{d}x}}{y^2}[/tex]
Rearrange to isolate dy/dx:
[tex]y^2\dfrac{\text{d}y}{\text{d}x}=42xy-(21x^2-1) \dfrac{\text{d}y}{\text{d}x}[/tex]
[tex]y^2\dfrac{\text{d}y}{\text{d}x}+(21x^2-1) \dfrac{\text{d}y}{\text{d}x}=42xy[/tex]
[tex]\dfrac{\text{d}y}{\text{d}x}(y^2+(21x^2-1))=42xy[/tex]
[tex]\dfrac{\text{d}y}{\text{d}x}(21x^2+y^2-1)=42xy[/tex]
[tex]\dfrac{\text{d}y}{\text{d}x}=\dfrac{42xy}{21x^2+y^2-1}[/tex]
Therefore, the second derivative is:
[tex]\large\boxed{\boxed{y''=\dfrac{42xy}{21x^2+y^2-1}}}[/tex]
Now, substitute x = 1 and y = 3 to find the second derivative at point (1, 3):
[tex]y''=\dfrac{42(1)(3)}{21(1)^2+(3)^2-1}[/tex]
[tex]y''=\dfrac{126}{21+9-1}[/tex]
[tex]y''=\dfrac{126}{29}[/tex]
Rounding to the nearest thousandth gives:
[tex]y''=4.345[/tex]