Respuesta :
Answer:
[tex]\textsf{Mixed number:}\quad 6\frac{2}{3}\; \sf chapters[/tex]
[tex]\textsf{Fraction:}\quad \dfrac{20}{3}\;\sf chapters[/tex]
Step-by-step explanation:
To find the total daily reading productivity level, we need to calculate the weighted average based on the time spent at each location.
Let C be the number of chapters read at the computer lab.
Let S be the number of chapters read at the coffee shop.
Let L be the number of chapters read at the library.
The time spent at each location is given as:
- Computer lab: ¹/₁₂ of the day
- Coffee shop: ¹/₄ of the day
- Library: ²/₃ of the day
Now, we can set up the equation for the total daily reading productivity level:
[tex]\textsf{Total productivity} = \dfrac{1}{12} \cdot C + \dfrac{1}{4} \cdot S + \dfrac{2}{3} \cdot L[/tex]
Given reading productivity levels:
- C = 1 chapter at the computer lab.
- S = 5 chapters at the coffee shop.
- L = 8 chapters at the library.
Substitute these values into the equation:
[tex]\textsf{Total productivity} = \dfrac{1}{12} \cdot 1 + \dfrac{1}{4} \cdot 5 + \dfrac{2}{3} \cdot 8[/tex]
Solve:
[tex]\begin{aligned}\textsf{Total productivity} &= \dfrac{1}{12} + \dfrac{5}{4}+ \dfrac{16}{3}\\\\&= \dfrac{1}{12} + \dfrac{5\cdot 3}{4\cdot 3}+ \dfrac{16\cdot 4}{3\cdot 4}\\\\&= \dfrac{1}{12} + \dfrac{15}{12}+ \dfrac{64}{12}\\\\&=\dfrac{1+15+64}{12}\\\\&=\dfrac{80}{12}\\\\&=\dfrac{80\div 4}{12\div 4}\\\\&=\dfrac{20}{3}\end{aligned}[/tex]
So, the total daily reading productivity level of the student is:
[tex]\textsf{Mixed number:}\quad 6\frac{2}{3}\; \sf chapters[/tex]
[tex]\textsf{Fraction:}\quad \dfrac{20}{3}\;\sf chapters[/tex]