Answer:
[tex]\sf x=4\sqrt{2}[/tex]
Step-by-step explanation:
To find the value of x, we can use the Geometric Mean Theorem (Altitude Rule).
Geometric Mean Theorem (Altitude Rule)
The altitude drawn from the vertex of the right angle perpendicular to the hypotenuse separates the hypotenuse into two segments. The ratio of the altitude to one segment is equal to the ratio of the other segment to the altitude:
[tex]\boxed{\sf \dfrac{Altitude}{Segment\:1}=\dfrac{Segment\:2}{Altitude}}[/tex]
In this case:
- Altitude = x
- Segment 1 = 8
- Segment 2 = 4
Substitute the values into the formula:
[tex]\sf \dfrac{x}{8}=\dfrac{4}{x}[/tex]
Cross multiply:
[tex]\sf x \cdot x=4 \cdot 8[/tex]
[tex]\sf x^2=32[/tex]
Square root both sides:
[tex]\sf \sqrt{x^2}=\sqrt{32}[/tex]
[tex]\sf x=\sqrt{32}[/tex]
(We take the positive square root of 32 since length cannot be negative).
Rewrite 32 as the product of 4² and 2:
[tex]\sf x=\sqrt{4^2\cdot 2}[/tex]
[tex]\textsf{Apply the radical rule:} \quad \sqrt{ab}=\sqrt{\vphantom{b}a}\sqrt{b}[/tex]
[tex]\sf x=\sqrt{4^2}\sqrt{2}[/tex]
[tex]\textsf{Apply the radical rule:} \quad \sqrt{a^2}=a, \quad a \geq 0[/tex]
[tex]\sf x=4\sqrt{2}[/tex]
Therefore, the value of x is:
[tex]\Large\boxed{\boxed{\sf x=4\sqrt{2}}}[/tex]