Respuesta :
Answer:
x-intercept: (8,0)
Step-by-step explanation:
Given: [tex]f(x)=x^2-16x+64[/tex]
For x-intercept, Put y=0 and solve for x.
x-intercept: It is a point where y-coordinate zero.
[tex]x^2-16x+64=0[/tex]
[tex]x^2-8x-8x+64=0[/tex]
[tex](x-8)(x-8)=0[/tex]
Equate each factor to 0 and solve for x
x-8 = 0 , x-8 = 0
x=8,8
x-intercept: (8,0)
Hence, The x-intercept is 8.
The x-intercept of the function is 8
The equation of the function is given as:
[tex]f(x) = x^2 - 16x + 64[/tex]
Expand the equation
[tex]f(x) = x^2 - 8x - 8x + 64[/tex]
Factorize the above equation
[tex]f(x) = x(x - 8) - 8(x -8)[/tex]
Factor out x - 8
[tex]f(x) = (x - 8) (x -8)[/tex]
Set f(x) to 0, to calculate the x-intercept
[tex](x - 8) (x -8)=0[/tex]
Rewrite as:
[tex](x - 8)^2=0[/tex]
Take the square roots of both sides
[tex]x - 8=0[/tex]
Solve for x
[tex]x = 8[/tex]
Hence, the x-intercept of the function is 8
Read more about intercepts at:
https://brainly.com/question/1884491