Solve the quadratic equation by completing the square.

[tex]x^{2} +16x+54=0[/tex]

First, choose the appropriate form and fill in the blanks with the correct numbers.
Then, solve the equation. If there is more than one solution, separate them with commas.

Respuesta :

msm555

Answer:

[tex]\sf x = -8 + \sqrt{10}[/tex]

[tex]\sf x = -8 - \sqrt{10}[/tex].

Step-by-step explanation:

To solve the quadratic equation [tex]\sf x^2 + 16x + 54 = 0[/tex] by completing the square, follow these steps:

[tex]\sf x^2 + 16x + 54 = 0[/tex]

Move the constant term to the other side of the equation:

[tex]\sf x^2 + 16x = -54[/tex]

Take half of the coefficient of [tex]\sf x[/tex] (which is 16), square it, and add it to both sides:

[tex]\sf x^2 + 16x + \left(\dfrac{16}{2}\right)^2 = -54 + \left(\dfrac{16}{2}\right)^2[/tex]

[tex]\sf x^2 + 16x + 64 = -54 + 64[/tex]

Factor the perfect square trinomial on the left side:

[tex]\sf (x + 8)^2 = 10[/tex]

Take the square root of both sides:

[tex]\sf x + 8 = \pm \sqrt{10}[/tex]

Solve for [tex]\sf x[/tex]:

[tex]\sf x = -8 \pm \sqrt{10}[/tex]

So, the solutions to the quadratic equation are:

[tex]\sf x = -8 + \sqrt{10}[/tex] and

[tex]\sf x = -8 - \sqrt{10}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico