Answer:
[tex]\sf x = -8 + \sqrt{10}[/tex]
[tex]\sf x = -8 - \sqrt{10}[/tex].
Step-by-step explanation:
To solve the quadratic equation [tex]\sf x^2 + 16x + 54 = 0[/tex] by completing the square, follow these steps:
[tex]\sf x^2 + 16x + 54 = 0[/tex]
Move the constant term to the other side of the equation:
[tex]\sf x^2 + 16x = -54[/tex]
Take half of the coefficient of [tex]\sf x[/tex] (which is 16), square it, and add it to both sides:
[tex]\sf x^2 + 16x + \left(\dfrac{16}{2}\right)^2 = -54 + \left(\dfrac{16}{2}\right)^2[/tex]
[tex]\sf x^2 + 16x + 64 = -54 + 64[/tex]
Factor the perfect square trinomial on the left side:
[tex]\sf (x + 8)^2 = 10[/tex]
Take the square root of both sides:
[tex]\sf x + 8 = \pm \sqrt{10}[/tex]
Solve for [tex]\sf x[/tex]:
[tex]\sf x = -8 \pm \sqrt{10}[/tex]
So, the solutions to the quadratic equation are:
[tex]\sf x = -8 + \sqrt{10}[/tex] and
[tex]\sf x = -8 - \sqrt{10}[/tex]