Respuesta :
[tex]v(r)=4P\eta\ell(R^2-r^2)[/tex]
(assuming [tex]R[/tex] is the radius of the vessel, and that [tex]0\le r\le R[/tex])
The average velocity of the blood is given by
[tex]\displaystyle\frac1{R-0}\int_{r=0}^{r=R}v(r)\,\mathrm dr[/tex]
[tex]=\displaystyle\frac{4P\eta\ell}R\int_{r=0}^{r=R}(R^2-r^2)\,\mathrm dr[/tex]
[tex]=\dfrac{4P\eta\ell}R\left(\dfrac23R^3\right)[/tex]
[tex]=\dfrac{8P\eta\ell}3R^2[/tex]
(assuming [tex]R[/tex] is the radius of the vessel, and that [tex]0\le r\le R[/tex])
The average velocity of the blood is given by
[tex]\displaystyle\frac1{R-0}\int_{r=0}^{r=R}v(r)\,\mathrm dr[/tex]
[tex]=\displaystyle\frac{4P\eta\ell}R\int_{r=0}^{r=R}(R^2-r^2)\,\mathrm dr[/tex]
[tex]=\dfrac{4P\eta\ell}R\left(\dfrac23R^3\right)[/tex]
[tex]=\dfrac{8P\eta\ell}3R^2[/tex]
The average velocity in the interval, 0 ≤ r ≤ R, describes the velocity of
blood flow that can be expected in the interval.
- [tex]\displaystyle \mathrm{The \ average \ velocity \ \underline{v(r)_{ave} = \frac{P\cdot R^2}{6 \cdot \eta \cdot l}}}[/tex]
Reasons:
The given function for velocity of blood flow is presented as follows;
[tex]\displaystyle v(r) = \frac{P}{4 \cdot \eta \cdot l} \cdot \left (R^2 - r^2 \right)[/tex]
Required:
The average velocity with respect to r.
Solution:
The average rate of change of velocity is given by the sum of all the
velocity divided by the size of the set of data;
[tex]\displaystyle The \ dataset \ sum = \frac{P}{4 \cdot \eta \cdot l} \cdot\int\limits^R_0 {\displaystyle \left (R^2 - r^2 \right)} \, dr = \mathbf{ \frac{P}{4 \cdot \eta \cdot l} \cdot \left [R^2\cdot r - \frac{r^3}{3} \right]^R_0}[/tex]
[tex]\displaystyle \frac{P}{4 \cdot \eta \cdot l} \cdot \left [R^2\cdot r - \frac{r^3}{3} \right]^R_0= \frac{P}{4 \cdot \eta \cdot l} \cdot\frac{2\cdot R^3}{3} = \mathbf{\frac{P\cdot R^3}{6 \cdot \eta \cdot l}}[/tex]
The dataset size = 0 ≤ r ≤ R = R - 0 = R
The average velocity, [tex]v(r)_{ave}[/tex], is therefore;
[tex]\displaystyle Average \ velocity, \, v(r)_{ave} = \frac{Dataset \ sum }{Dataset \ size} = \frac{ \frac{P\cdot R^3}{6 \cdot \eta \cdot l}}{R} = \frac{P\cdot R^2}{6 \cdot \eta \cdot l}[/tex]
[tex]\displaystyle \underline{The \ average \ velocity, v(r)_{ave} = \frac{P\cdot R^2}{6 \cdot \eta \cdot l}}[/tex]
Learn more about finding an average of a dataset, and integrals here:
https://brainly.com/question/5290680
https://brainly.com/question/20156869