The velocity v of blood that flows in a blood vessel with radius r and length ℓ at a distance r from the central axis is v(r) = p 4ηℓ (r2 − r2) where p is the pressure difference between the ends of the vessel and η is the viscosity of the blood. find the average velocity vave (with respect to r) over the interval 0 ≤ r ≤ r. (use eta for η. use capital p for pressure.)

Respuesta :

[tex]v(r)=4P\eta\ell(R^2-r^2)[/tex]

(assuming [tex]R[/tex] is the radius of the vessel, and that [tex]0\le r\le R[/tex])

The average velocity of the blood is given by

[tex]\displaystyle\frac1{R-0}\int_{r=0}^{r=R}v(r)\,\mathrm dr[/tex]
[tex]=\displaystyle\frac{4P\eta\ell}R\int_{r=0}^{r=R}(R^2-r^2)\,\mathrm dr[/tex]
[tex]=\dfrac{4P\eta\ell}R\left(\dfrac23R^3\right)[/tex]
[tex]=\dfrac{8P\eta\ell}3R^2[/tex]

The average velocity in the interval, 0 ≤ r ≤ R, describes the velocity of

blood flow that can be expected in the interval.

  • [tex]\displaystyle \mathrm{The \ average \ velocity \ \underline{v(r)_{ave} = \frac{P\cdot R^2}{6 \cdot \eta \cdot l}}}[/tex]

Reasons:

The given function for velocity of blood flow is presented as follows;

[tex]\displaystyle v(r) = \frac{P}{4 \cdot \eta \cdot l} \cdot \left (R^2 - r^2 \right)[/tex]

Required:

The average velocity with respect to r.

Solution:

The average rate of change of velocity is given by the sum of all the

velocity divided by the size of the set of data;

[tex]\displaystyle The \ dataset \ sum = \frac{P}{4 \cdot \eta \cdot l} \cdot\int\limits^R_0 {\displaystyle \left (R^2 - r^2 \right)} \, dr = \mathbf{ \frac{P}{4 \cdot \eta \cdot l} \cdot \left [R^2\cdot r - \frac{r^3}{3} \right]^R_0}[/tex]

[tex]\displaystyle \frac{P}{4 \cdot \eta \cdot l} \cdot \left [R^2\cdot r - \frac{r^3}{3} \right]^R_0= \frac{P}{4 \cdot \eta \cdot l} \cdot\frac{2\cdot R^3}{3} = \mathbf{\frac{P\cdot R^3}{6 \cdot \eta \cdot l}}[/tex]

The dataset size = 0 ≤ r ≤ R = R - 0 = R

The average velocity, [tex]v(r)_{ave}[/tex], is therefore;

[tex]\displaystyle Average \ velocity, \, v(r)_{ave} = \frac{Dataset \ sum }{Dataset \ size} = \frac{ \frac{P\cdot R^3}{6 \cdot \eta \cdot l}}{R} = \frac{P\cdot R^2}{6 \cdot \eta \cdot l}[/tex]

[tex]\displaystyle \underline{The \ average \ velocity, v(r)_{ave} = \frac{P\cdot R^2}{6 \cdot \eta \cdot l}}[/tex]

Learn more about finding an average of a dataset, and integrals here:

https://brainly.com/question/5290680

https://brainly.com/question/20156869

ACCESS MORE
EDU ACCESS