Respuesta :

[tex]\bf 5y^4+y^3+\frac{2}{3}y^2+y+1\quad \begin{cases} 5y^4&\textit{degree}\ \boxed{4}\\ y^3&\textit{degree}\ 3\\ \frac{2}{3}y^2&\textit{degree}\ 2\\ y&\textit{degree}\ 1 \end{cases}\quad \textit{polynomial degree, 4}\\\\ -------------------------------\\\\ 3a^9+7x^3y^5b^2-8b^3y^6\quad \begin{cases} 3a^9&\textit{degree}\ 9\\ 7x^3y^5b^2&\textit{degree}\ 3+5+2=\boxed{10}\\ 8b^3y^6&\textit{degree}\ 3+6=9 \end{cases} \\\\ \textit{polynomial degree, 10}[/tex]

so.. notice, if the term has several variables, the degree of the term is, the sum of the exponents.

Answer: 4

Step-by-step explanation: