Find the lateral area for the prism. L.A. =
Find the total area for the prism. T.A. =
![Find the lateral area for the prism LA Find the total area for the prism TA class=](https://us-static.z-dn.net/files/d80/71d8eab37256f0cf94ba8e531862e754.gif)
Answer:
Part 1) [tex]LA=(80+16\sqrt{13})\ in^{2}[/tex]
Part 2) [tex]TA=(104+16\sqrt{13})\ in^{2}[/tex]
Step-by-step explanation:
Part 1) Find the lateral area of the prism
we know that
The lateral area of the prism is equal to
[tex]LA=Ph[/tex]
where
P is the perimeter of the base
h is the height of the prism
Applying the Pythagoras Theorem
Find the hypotenuse of the triangle
[tex]c^{2}=4^{2}+6^{2}\\ \\c^{2}=52\\ \\c=2\sqrt{13}\ in[/tex]
Find the perimeter of triangle
[tex]P=4+6+2\sqrt{13}=(10+2\sqrt{13})\ in[/tex]
Find the lateral area
[tex]LA=Ph[/tex]
we have
[tex]P=(10+2\sqrt{13})\ in[/tex]
[tex]h=8\ in[/tex]
substitutes
[tex]LA=(10+2\sqrt{13})*8=(80+16\sqrt{13})\ in^{2}[/tex]
Part 2) Find the total area of the prism
we know that
The total area of the prism is equal to
[tex]TA=LA+2B[/tex]
where
LA is the lateral area of the prism
B is the area of the base of the prism
Find the area of the base B
The area of the base is equal to the area of the triangle
[tex]B=\frac{1}{2}bh[/tex]
substitute
[tex]B=\frac{1}{2}(6)(4)=12\ in^{2}[/tex]
Find the total area of the prism
[tex]TA=LA+2B[/tex]
we have
[tex]B=12\ in^{2}[/tex]
[tex]LA=(80+16\sqrt{13})\ in^{2}[/tex]
substitute
[tex]TA=(80+16\sqrt{13})+2(12)=(104+16\sqrt{13})\ in^{2}[/tex]