Respuesta :
Answer:
The amplitude of the function is 3, period of the function is [tex]\frac{\pi}{2}[/tex] and midline of the function is 2.
Step-by-step explanation:
The given function is
[tex]f(x)=3\cos(4x-\pi)+2[/tex] .... (1)
The standard form of a Cosine function is
[tex]g(x)=a\cos(bx+c)+d[/tex] ... (2)
where, a is amplitude, period is [tex]\frac{2\pi}{b}[/tex] and d is midline.
From (1) and (2), we get
[tex]a=3,b=4,d=2[/tex]
The amplitude of the function is
[tex]a=3[/tex]
The period of the function is
[tex]\frac{2\pi}{b}=\frac{2\pi}{4}=\frac{\pi}{2}[/tex]
The midline of the function is
[tex]d=2[/tex]
Therefore the amplitude of the function is 3, period of the function is [tex]\frac{\pi}{2}[/tex] and midline of the function is 2.