[tex]\bf \textit{Amount of Population Growth}\\\\
A=Ie^{rt}\qquad
\begin{cases}
A=\textit{accumulated amount}\to &500,000\\
I=\textit{initial amount}\to &155,000\\
r=rate\to 4\%\to \frac{4}{100}\to &0.04\\
t=\textit{elapsed time}\\
\end{cases}[/tex]
[tex]\bf 500000=155000e^{0.04t}\implies \cfrac{500000}{155000}=e^{0.04t}\implies \cfrac{100}{31}=e^{0.04t}
\\\\\\
\textit{now, we take \underline{ln} to both sides}
\\\\\\
ln\left( \frac{100}{31}\right)=ln(e^{0.04t})\implies ln\left( \frac{100}{31}\right)=0.04t\implies \cfrac{ln\left( \frac{100}{31}\right)}{0.04}=t[/tex]
so it will have 500,000 approximately "t" years after 2015.