Respuesta :

see picture, it is symmetrical about the Y axis
Ver imagen musiclover10045

Answer:

Symmetry about y-axis

Step-by-step explanation:

We are given that

[tex]r=4-3sin\theta[/tex]

When the graph is symmetric about x- axis then the point (x,y) change in to (x,-y) and the function remain same.

The point[tex] (r,\theta,)[/tex] is replaced by [tex]( r,-\theta)[/tex]

Substitute the value then we get

[tex]r=4-3 sin(-\theta) [/tex]

[tex]r=4+3sin\theta[/tex]  ([tex]sin(-\theta)=-sin\theta)[/tex]

The value of function changes .Hence , the function is not symmetric about x- axis.

When the function is symmetric about y-axis then the point [tex](r,\theta) [/tex] change into point [tex](r,\pi-\theta)[/tex] and function remain same

Substitute the value

[tex]r=4-3sin(\pi-\theta)[/tex]

[tex]r=4-3 sin\theta[/tex]  ([tex]sin(\pi-\theta)=sin\theta[/tex])

The value of function does not change when point change ,Hence, the function is symmetric about y- axis.

When the graph is symmetric about origin then the point  [tex](\theta,r)[/tex] change into point[tex](r,\pi+\theta)[/tex] and the value of function remain same.

Substitute the value then we get

[tex]r=4-3sin(\pi+\theta)[/tex]

[tex]r=4+3sin\theta [/tex]

[tex]r=4+3sin\theta [/tex]

Hence, the graph has  symmetry about y-axis .