Respuesta :
Answer:
Symmetry about y-axis
Step-by-step explanation:
We are given that
[tex]r=4-3sin\theta[/tex]
When the graph is symmetric about x- axis then the point (x,y) change in to (x,-y) and the function remain same.
The point[tex] (r,\theta,)[/tex] is replaced by [tex]( r,-\theta)[/tex]
Substitute the value then we get
[tex]r=4-3 sin(-\theta) [/tex]
[tex]r=4+3sin\theta[/tex] ([tex]sin(-\theta)=-sin\theta)[/tex]
The value of function changes .Hence , the function is not symmetric about x- axis.
When the function is symmetric about y-axis then the point [tex](r,\theta) [/tex] change into point [tex](r,\pi-\theta)[/tex] and function remain same
Substitute the value
[tex]r=4-3sin(\pi-\theta)[/tex]
[tex]r=4-3 sin\theta[/tex] ([tex]sin(\pi-\theta)=sin\theta[/tex])
The value of function does not change when point change ,Hence, the function is symmetric about y- axis.
When the graph is symmetric about origin then the point [tex](\theta,r)[/tex] change into point[tex](r,\pi+\theta)[/tex] and the value of function remain same.
Substitute the value then we get
[tex]r=4-3sin(\pi+\theta)[/tex]
[tex]r=4+3sin\theta [/tex]
[tex]r=4+3sin\theta [/tex]
Hence, the graph has symmetry about y-axis .